h-FUNCTION, HILBERT-KUNZ DENSITY FUNCTION AND FROBENIUS-POINCARÉ FUNCTION

CHENG MENG AND ALAPAN MUKHOPADHYAY

Abstract

Given ideals I, J of a noetherian local ring (R, \mathfrak{m}) such that $I+J$ is \mathfrak{m} primary and a finitely generated module M, we associate an invariant of (M, R, I, J) called the h-function. Our results on h-function allow extensions of the theories of Frobenius-Poincaré functions and Hilbert-Kunz density functions from the known graded case to the local case, answering a question of Trivedi. When J is \mathfrak{m}-primary, we describe the support of the corresponding density function in terms of other invariants of (R, I, J). We show that the support captures the F-threshold: $c^{J}(I)$, under mild assumptions, extending results of Trivedi and Watanabe. The h-function treats HilbertSamuel, Hilbert-Kunz multiplicity and F-threshold on an equal footing. We develop the theory of h-functions in a more general setting which yields a density function for F-signature. A key to many results on h-function is a 'convexity technique' that we introduce, which in particular proves differentiability of Hilbert-Kunz density function almost everywhere, thus contributing to another question of Trivedi.

1. Introduction

Hilbert-Kunz multiplicity and F-signature are numerical invariants appearing in prime characteristics commutative algebra and algebraic geometry. These quantify severity of singularities at a point of a variety and also relate to other invariants, such as the cardinality of the local fundamental group of the punctured spectrum of a strongly F-regular local ring; see [AE08], [CST18] and Section 2. The theory of Hilbert-Kunz multiplicity in the graded case has witnessed two new generalizations in recent years: the Hilbert-Kunz density function and the Frobenius-Poincaré function. Fix a standard graded ring S in prime characteristics and a homogeneous ideal \mathfrak{a} of finite co-length. When the Krull dimension $\operatorname{dim}(S)$ is at least two, Trivedi has proven the existence of a compactly supported real valued continuous function $g_{S, \mathfrak{a}}$ of a real variable- called the Hilbert-Kunz density function- whose integral is the Hilbert-Kunz multiplicity $e_{H K}(\mathfrak{a}, S)$; see Section 2 for details. For the pair (S, \mathfrak{a}), where $\operatorname{dim}(S)$ is not necessarily at least two, the associated Frobenius-Poincaré function is an entire function in one complex variable, whose value at the origin is the Hilbert-Kunz multiplicity $e_{H K}(\mathfrak{a}, S)$; see Section 2. These two functions not only encode more subtle invariants of (S, \mathfrak{a}) than the Hilbert-Kunz multiplicity but also allow application of geometric tools, such as sheaf cohomology on $\operatorname{Proj}(S)$, and tools from homological algebra. Successful applications of the Hilbert-Kunz density functions have resolved Watanabe and Yoshida's conjecture on the values of Hilbert-Kunz multiplicity of quadric hypersurfaces, rationality of Hilbert-Kunz multiplicities and F-thresholds of two dimensional normal rings among other results; see [Tri21], [TW21], [Tri05], [Tri19].

Building extensions of these two theories to the setting of a noetherian local ring is a natural question; see Trivedi's question [Tri18, Question 1.3]. In this article, we extend the theories of Hilbert-Kunz density function and Frobenius-Poincaré function to the local setting. Our extensions are facilitated by a systematic study of a new function, which
we call the h-function.
Fix a noetherian local domain (R, \mathfrak{m}) of prime characteristic $p>0$ and Krull dimension d, where the Frobenius endomorphism is a finite map. Fix two ideals I, J of R such that $I+J$ is \mathfrak{m}-primary. We prove:

Theorem A: Consider the sequence of functions of a real variable

$$
h_{n, I, J}(s)=l\left(\frac{R}{\left(I^{\left[s p^{n}\right]}+J^{\left[p^{n}\right]}\right) R}\right),
$$

where $J^{\left[p^{n}\right]}$ is the ideal generated by $\left\{f^{p^{n}} \mid f \in J\right\}$; and $l\left(__{\text {(}}\right)$ is the length function.
(1) (Theorem 3.7, Theorem 3.30) There is a real-valued function of a real variable denoted by $h_{I, J}(s)$ such that given an interval $\left[s_{1}, s_{2}\right] \subseteq \mathbb{R}$, there is a constant C depending only on s_{1}, s_{2} satisfying

$$
\left|h_{I, J}(s)-\frac{h_{n, I, J}(s)}{p^{n d}}\right| \leq \frac{C}{p^{n}}, \text { for all } s \in\left[s_{1}, s_{2}\right] \text { and } n \in \mathbb{N} .
$$

Consequently, the sequence of functions $\frac{h_{n, I, J}(s)}{p^{n d}}$ converges to $h_{I, J}(s)$ and the convergence is uniform on every compact subset of \mathbb{R}.
(2) (Theorem 3.31, Theorem 3.20) Given real numbers $s_{2}>s_{1}>0$, there is a constant C^{\prime} - depending only on s_{1}, s_{2} such that for $x, y \in\left[s_{1}, s_{2}\right]$,

$$
\left|h_{I, J}(x)-h_{I, J}(y)\right| \leq C|x-y|
$$

That is, away from zero, $h_{I, J}$ is locally Lipschitz continuous.
The function $h_{I, J}$ is called the h-function associated to the pair (I, J). In fact we prove a
version the above theorem for an ideal I and a family of ideals J_{\bullet} satisfying what we call Condition C allowing for applications to other numerical invariants such as F-signature; Theorem 3.7.

Special instances of this h-function have been considered by different authors: in [Tay18] when both I and J are \mathfrak{m}-primary, in [BST13] when R is regular, I is principal and $J=\mathfrak{m}$ to study F-signature of a pair and in [Kos17] in the same set up but in a different context. Theorem A generalizes their results. Moreover the techniques involved in our proofs yield uniform convergence which is crucial for us.

In Theorem 3.16, we prove that there is a polynomial $P_{1}(s)$ of degree $\operatorname{dim}(R / J)$ such that $h_{I, J}(s) \leq P_{1}(s)$ for all s. Using this polynomial bound we prove existence and holomorphicity of a function $F_{R, I, J}(y)$ on the open lower half complex plane; see Theorem 4.3. We moreover show:

$$
F_{R, I, J}(y)=\int_{\mathbb{R}} h_{I, J}(t) e^{-i t y}(i y) d t
$$

When J is \mathfrak{m}-primary, we prove $F_{R, I, J}(y)$ is entire. When (R, \mathfrak{m}, J) comes from a graded pair (S, \mathfrak{a}), i.e. (R, \mathfrak{m}) is the localization of a standard graded ring S at the homogeneous maximal ideal, I is the homogeneous maximal ideal and J comes from a homogeneous ideal of finite colength $\mathfrak{a}, F_{R, I, J}(y)$ coincides with the Frobenius-Poincaré function of the pair (S, \mathfrak{a}); see Proposition 6.8,(3). Unlike [Muk22], our treatment allows us to consider Frobenius-Poincaré function of (S, \mathfrak{a}), where \mathfrak{a} need not have finite colength; see Proposition 6.8, (2).

Extending the theory of Hilbert-Kunz density functions is more involved. Set

$$
f_{n}(s)=h_{n, I, J}\left(s+\frac{1}{p^{n}}\right)-h_{n}(s) .
$$

When (R, \mathfrak{m}, J) comes from a graded pair (S, \mathfrak{a}), where $\operatorname{dim}(S) \geq 2$, we point out that the sequence of functions

$$
\frac{f_{n}(s)}{\left(p^{n}\right)^{d-1}}
$$

converges uniformly to the Hilbert-Kunz density function of (S, \mathfrak{a}); see Theorem 6.6. But for arbitrary ideals I, J of a local ring (R, \mathfrak{m}), the pointwise convergence of, $f_{n}(s) /\left(p^{n}\right)^{d-1}$ at every s is not clear; in fact when $I=0$ the sequence does not converge,see Example 5.11. In this direction, we relate the convergence of $f_{n}(s) /\left(p^{n}\right)^{d-1}$ to the differentiability of $h_{I, J}$ at s. We prove,

If $h_{I, J}(s)$ if differentiable at $s, f_{n}(s) /\left(p^{n}\right)^{d-1}$ converges to $h_{I, J}^{\prime}(s)$; see Theorem 5.8
In the direction of differentiability of h, we prove:
Theorem B:(Theorem 5.4,(3),(4)) Let $h_{I, J}$ be as before
(1) The left and right hand derivative of h exist at all non-zero points.
(2) Outside a countable subset of \mathbb{R}, h is differentiable; if h is differentiable on an open interval, then it is continuously differentiable on the same interval.

Thm B, (2) implies that for any I, J in the local setting, $f_{n}(s) /\left(p^{n}\right)^{d-1}$ converges outside a countable subset of \mathbb{R} and coincides with the derivative of $h_{I, J}(s)$; thus outside this countable set the limiting function $f_{n}(s) /\left(p^{n}\right)^{d-1}$ yields a well-defined notion of density function. In Theorem 5.4, we actually prove existence of density function more generally for a family satisfying Condition C. This generalization in particular yields a density function for F-signature. When (R, \mathfrak{m}) comes from a graded pair (S, \mathfrak{a}) with $\operatorname{dim}(S) \geq 2$, we prove that the corresponding h-function is continuously differentiable and the derivative coincides with the Hilbert-Kunz density function that Trivedi defines. We moreover prove the existence and continuity of the density function to the case when \mathfrak{a} does not have finite colength; see Theorem 6.7. Our work shows that h-function is twice differentiable outside a set of measure zero contributing to Trivedi's question about the order of differentiability of the Hilbert-Kunz density function; see [Tri23, Question 1], Remark 5.5.

Thm B is a consequence of a 'convexity technique' that we introduce. For fixed $s_{0}>0$, in Theorem 5.3, we construct a function $H\left(s, s_{0}\right)$ which we prove to be convex and show that

$$
H\left(s, s_{0}\right)=h(s) / c(s)-h\left(s_{0}\right) / c\left(s_{0}\right)+\int_{s_{0}}^{s} h(t) c^{\prime}(t) / c^{2}(t) d t
$$

where $c(s)=s^{\mu-1} /(\mu-1)!, \mu$ being the cardinality of a set of generators of I. Thm B then follows from general properties of convex functions. The underlying idea of the same convexity argument is used to prove Lipschitz continuity of h-functions stated in Thm A.

The behaviour of $h_{I, J}$ near zero is more subtle. We prove $h_{I, J}$ is continuous at zero if and only if I is non-zero. In fact our result implies,

Theorem C:(Theorem 8.11) Suppose $\operatorname{dim}(R / I)=d^{\prime}$. Denote the set of minimal primes of R / I of dimension d^{\prime} by $\operatorname{Assh}(R / I)$. Then

$$
\lim _{s \rightarrow 0+} \frac{h(s)}{s^{d-d^{\prime}}}=\frac{1}{\left(d-d^{\prime}\right)!} \sum_{P \in \operatorname{Assh}(R / I)} e_{H K}(J, R / P) e\left(I, R_{P}\right),
$$

where $e(I, \ldots)$ denotes the Hilbert-Samuel multiplicity with respect to I. In particular, the order of vanishing $h(s)$ at $s=0$ is $d-d^{\prime}$. Thm C extends part of [BST13, Thm 4.6],
where R is assumed to be regular, I a principal ideal and $J=\mathfrak{m}$. The h-function treats different numerical invariants of (R, I, J) on an equal footing. When J is m-primary, for large $s, h_{I, J}(s)=e_{H K}(R, J)$; when I is \mathfrak{m}-primary, for $s>0$ and close to zero $h_{I, J}(s)=e(I, R) \frac{s^{d}}{d!} ;$ see [Tay18, Lemma 3.3]. Moreover,

Theorem D:(Theorem 8.6)Suppose J is \mathfrak{m}-primary, R is reduced and formally equidimensional (e.g. (R, \mathfrak{m}) is a complete domain or localization of a graded domain). Let $\alpha_{R, I, J}=\sup \left\{s \in \mathbb{R} \mid s>0, h_{I, J}(s) \neq e_{H K}(J, R)\right\}$. Consider the sequence of numbers,

$$
r_{I}^{J}(n)=\max \left\{t \in \mathbb{N} \mid I^{t} \nsubseteq\left(J^{\left[p^{n}\right]}\right)^{*}\right\}
$$

where $\left(J^{\left[p^{n}\right]}\right)^{*}$ denotes the tight closure of the ideal $\left(J^{\left[p^{n}\right]}\right)$; see Definition 2.5. Then

$$
\lim _{n \rightarrow \infty} \frac{r_{I}^{J}(n)}{p^{n}}=\alpha_{R, I, J} .
$$

We prove, under suitable hypothesis, for e.g. strong F-regularity at every point of $\operatorname{Spec}(R)-\{\mathfrak{m}\}, r_{I}^{J}(n) / p^{n}$ in fact converges to the F-threshold $c^{J}(I)$; see Theorem 8.9. F-threshold is an invariant extensively studied in prime characteristic singularity theory; see [Hun+08b], [MTW05] and is closely related \log canonical threshold via reduction modulo p; see [TW04], [HW02]. Whenever $h_{I, J}$ is differentiable, the support of $\frac{d}{d s} h_{I, J}$, which agress with the Hilbert-Kunz density function of (R, I, J), is $\left[0, \alpha_{R, I, J}\right]$. This generalizes Trivedi and Watanabe's description of the support Hilbert-Kunz density function which was made when R is strongly F-regular and graded; see Remark 8.8, [TW21, Thm 4.9].

Notation and conventions: All rings are commutative and noetherian. The symbol p denotes a positive prime number. Unless otherwise said, the pair (R, \mathfrak{m}) denotes a noetherian local ring R - not necessarily a domain- with maximal ideal \mathfrak{m}. By saying (R, \mathfrak{m}) is graded, we mean R is a standard graded ring with homogeneous maximal ideal \mathfrak{m}. When (R, \mathfrak{m}) is assumed to be graded, R-modules and ideals are always assumed to be \mathbb{Z}-graded. We assume R has characteristic p and R is F-finite, i.e. the Frobenius endomorphism of R is finite. We index the sequences of numbers and functions by n. Whenever the letter q appears in such a sequence, q denotes p^{n}. For an ideal $I \subset R, I^{\left[p^{n}\right]}$ or $I^{[q]}$ denotes the ideal generated by $\left\{f^{q} \mid f \in I\right\}$ and is called the q or p^{n}-th Frobenius power of I. The operator $l_{R}(\ldots)$ or simply $l(\ldots)$ denotes the length function. For an R-module $M, F_{*}^{n} M$ denotes the R-module whose underlying abelian group is M, but the R-action comes from restriction scalars through the iterated Frobenius morphism $F^{n}: R \rightarrow R$.

2. Background material

Let (R, \mathfrak{m}) be a noetherian local or graded ring, J be an \mathfrak{m}-primary ideal, M be a finitely generated R-module. Although the germ of Hilbert-Kunz multiplicity was present in Kunz's seminal work [Kun69], its existence was not proven until Monsky's work:

Theorem 2.1. (see [Mon83]) There is a real number denoted by $e_{H K}(J, M)$ such that,

$$
l\left(\frac{M}{J p^{\left[p^{n}\right]} M}\right)=e_{H K}(J, M)\left(p^{n}\right)^{\operatorname{dim}(M)}+O\left(\left(p^{n}\right)^{\operatorname{dim}(M)-1}\right) .
$$

The number $e_{H K}(J, M)$ is called the Hilbert-Kunz multiplicity of M with respect to J.
Smaller values of $e_{H K}(R, \mathfrak{m})$ predicts milder singularity of (R, \mathfrak{m}); see for e.g. [AE08, Cor 3.6], [Man04]. It is imperative to consider Hilbert-Kunz multiplicity with respect to arbitrary ideals, for e.g. to realize F-signature (see Example 3.10)- an invariant characterizing strong F-regularity of (R, \mathfrak{m}) - in terms of Hilbert-Kunz multiplicity; see [PT18, Cor 6.5]. We refer the readers to [Hun13], [Muk23, Chapter 2] and the references there in for surveying the state of art.

When (R, \mathfrak{m}) is graded, Trivedi's Hilbert-Kunz density function refines the notion of Hilbert-Kunz multiplicity:
Theorem 2.2. (see [Tri18]) Let (R, \mathfrak{m}) be graded, J be a finite co-length homogeneous ideal, M be a finitely generated \mathbb{Z}-graded R-module. Consider the sequence of functions of a real variable s,

$$
\tilde{g}_{n, M, J}(s)=l\left(\left[\frac{M}{J[q] M}\right]_{\lfloor s q\rfloor}\right) .
$$

(1) There is a compact subset of \mathbb{R} containing the supports of all \tilde{g}_{n} 's.
(2) When $\operatorname{dim}(M) \geq 1$, there is a function-denoted by $\tilde{g}_{M, J}$ such that $\left(\frac{1}{q}\right)^{\operatorname{dimM}-1} \tilde{g}_{n, M, J}(s)$ converges pointwise to $\tilde{g}_{M, J}(s)$ for all $s \in \mathbb{R}$.
(3) When $\operatorname{dim}(M) \geq 2$, the above convergence is uniform and $\tilde{g}_{M, J}$ is continuous.

$$
\begin{equation*}
e_{H K}(J, M)=\int_{0}^{\infty} \tilde{g}_{M, J}(s) d s \tag{4}
\end{equation*}
$$

Definition 2.3. The function $\tilde{g}_{M, J}$ is called the Hilbert-Kunz density function of (N, J).
For a graded ring (R, \mathfrak{m}), the Frobenius-Poincaré function produces another refinement of the Hilbert-Kunz multiplicity. Frobenius-Poincaré functions are essentialy a limiting function of the Hilbert series of $\frac{M}{J[q] M}$ in the variable $e^{-i y}$, see [Muk22, Rmk 3.6].
Theorem 2.4. (see [Muk22]) Let M be a finitely generated \mathbb{Z}-graded module over a graded (R, \mathfrak{m}), J be a finite colength homogeneous ideal. Consider the sequence of entire functions on \mathbb{C}

$$
G_{n, M, J}(y)=\left(\frac{1}{q}\right)^{\operatorname{dim}(M)} l\left(\left[\frac{M}{J[q]}\right]_{j}\right) e^{-i y j / q} .
$$

(1) The sequence of functions $G_{n, M, J}(y)$ converges to an entire function $G_{M, J}(y)^{1}$ on \mathbb{C}. The convergence is uniform on every compact subset of \mathbb{C}.
(2)

$$
G_{M, J}(0)=e_{H K}(J, M) .
$$

The last theorem holds for any graded ring which are not necessarily standard graded. For the notion of Hilbert-Kunz density function in the non-standard graded setting, see [TW22]. By [Muk23, Thm 8.3.2], for a standard graded (R, \mathfrak{m}) of Krull dimension at least one, the holomorphic Fourier transform of $\tilde{g}_{M, J}$ is $G_{M, J}$, i.e.

$$
G_{M, J}(y)=\int_{0}^{\infty} \tilde{g}_{M, J}(s) e^{-i y s} d s
$$

[^0]Thus when $\operatorname{dim}(M)$ is at least two, the Hilbert-Kunz density function and the FrobeniusPoincaré function determine each other; see [Muk23, Rmk 8.2.4]. Both Hilbert-Kunz density function and Frobenius-Poincaré function capture more subtle graded invariants of (M, J) than the Hilbert-Kunz multiplicity. For e.g. when R is two dimensional, normal, J is generated by forms of the same degree, $\tilde{g}_{R, J}$ and $G_{R, J}$ determine and are determined by slopes and ranks of factors in the Harder-Narasimhan filtration of a syzygy bundle associated to J on $\operatorname{Proj}(R)$; see [Tri05], [Bre07], [Tri18, Example 3.3], [Muk22, Chap 6]. For other results on Hilbert-Kunz density functions and Frobenius-Poincaré functions, see the reference section of [Muk23]. These two functions and the Hilbert-Kunz multiplicity of (R, J) detects J up to its tight closure. Recall:

Definition 2.5. ([HH90, Def 3.1]) Let A be a ring of characteristic $p>0$. We say $x \in A$ is in the tight closure of an ideal I if there is a c not in any minimal primes of A such that $c x^{p^{n}} \in I^{\left[p^{n}\right]}$ for all large n. The elements in the tight closure of I form an ideal; denoted I^{*}.

Theorem 2.6. Let $I \subseteq J$ be two ideals in (R, \mathfrak{m}).
(1) If $I^{*}=J^{*}$, $e_{H K}(I, R)=e_{H K}(J, R)$.
(2) Conversely, when R is formally equidimensional, i.e. all the minimal primes of the completion \hat{R} have the same dimension, $e_{H K}(I, R)=e_{H K}(J, R)$ implies $I^{*}=J^{*}$. When (R, m) is a graded ring where all the minimal primes have the same dimension, $\tilde{g}_{I, R}=\tilde{g}_{J, R}$ or $G_{I, R}=G_{J, R}$ implies $I^{*}=J^{*}$.

3. h-FUNCTION

Given ideals I, J of a local ring (R, \mathfrak{m}) such that $I+J$ is \mathfrak{m}-primary and a finitely generated R-module M, we assign a real-valued function $h_{M, I, J}$ of a real variable, which we refer to as the corresponding h-function. The existence and continuity of $h_{M, I, J}$ is proven in Section 3.4. When R is additionally a domain and $M=R$, given an ideal I and a family of ideals $\left\{J_{n}\right\}_{n \in \mathbb{N}^{-}}$satisfying what we call Condition C below- in Section 3.1, we associate a corresponding h-function which is continuous on $\mathbb{R}_{>0}$.

3.1. h-functions of a domain.

Definition 3.1. Let $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ be a family of ideals of the F-finite local ring R.
(1) I_{\bullet} is called a weak p-family if there exists $c \in R$ - not contained in any minimal primes of maximal dimension of R such that $c I_{n}^{[p]} \in I_{n+1}$.
(2) I_{\bullet} is called a weak p^{-1}-family if exists a nonzero $\phi \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$ such that $\phi\left(F_{*} I_{n+1}\right) \subset I_{n}$.
(3) A big p-family (resp. big p^{-1} family) is a weak p (resp. p^{-1})-family I_{\bullet}, such that there is an $\alpha \in \mathbb{N}$ for which $\mathfrak{m}^{\left[p^{n+\alpha}\right]} \subseteq I_{n}$ for all n.

A family of ideals where (1) holds with $c=1$ and $\mathfrak{m}^{\left[p^{n}\right]} \subseteq I_{n}$, has been called a p-family of ideals; see [HJ18]. Notions of p and p^{-1} families provide an abstract framework for proving existence of asymptotic numerical invariants:

Theorem 3.2. (see [PT18, Theorem 4.3]) Let (R, \mathfrak{m}, k) be an F-finite local domain of dimension d, $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ a sequence of ideals such that $\mathfrak{m}^{\left[p^{n}\right]} \subset I_{e}$ for all $n \in \mathbb{N}$.
(1) If there exists a nonzero $c \in R$ such that $c I_{n}^{[p]} \subset I_{n+1}$ for all $n \in \mathbb{N}$, then $\eta=\lim _{e \rightarrow \infty} 1 / p^{n d} l_{R}\left(R / I_{n}\right)$ exists, and there exists a positive constant C that only depends on c such that $\eta-1 / p^{n d} l_{R}\left(R / I_{n}\right) \leq C / p^{n}$ for all $n \in \mathbb{N}$.
(2) If there exists a non-zero $\phi \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$ such that $\phi\left(F_{*} I_{n+1}\right) \subset I_{n}$ for all $e \in \mathbb{N}$, then $\eta=\lim _{n \rightarrow \infty} 1 / p^{n d} l_{R}\left(R / I_{n}\right)$ exists, and there exists a positive constant C that only depends on ϕ such that $1 / p^{n d} l_{R}\left(R / I_{n}\right)-\eta \leq C / p^{n}$ for all $n \in \mathbb{N}$.
(3) If the conditions in (1) and (2) are both satisfied then there exists a constant C that only depends on c and ϕ such that $\left|1 / p^{n d} l_{R}\left(R / I_{n}\right)-\eta\right| \leq C / p^{n}$.

Lemma 3.3. Let (R, \mathfrak{m}) be a local domain. Let I_{n}, J_{n} be two weak p-families, then so is the family $I_{n}+J_{n}$. If I_{n}, J_{n} are two weak p^{-1}-families, then so is the family $I_{n}+J_{n}$. When one of the families are big (p or p^{-1}), then so is their sum.

Proof. Suppose there are nonzero elements c_{1}, c_{2} such that $c_{1} I_{n}^{[p]} \subset I_{n+1}$ and $c_{2} J_{n}^{[p]} \subset$ J_{n+1}, then $c=c_{1} c_{2}$ is still nonzero and satisfies $c I_{n}^{[p]} \subset I_{n+1}, c J_{n}^{[p]} \subset J_{n+1}$. So $c\left(I_{n}+\right.$ $\left.J_{n}\right)^{[p]} \subset I_{n+1}+J_{n+1}$. If there are non-zero elements $\phi_{1}, \phi_{2} \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$, such that $\phi_{1}\left(F_{*} I_{n+1}\right) \subset I_{n}$ and $\phi_{2}\left(F_{*} J_{n+1}\right) \subset J_{n}$. For $\phi \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$ and $r \in R$, define $r \phi \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$ by the formula $r \phi(s)=\phi(r s)$. This puts an R-module structure on $\operatorname{Hom}_{R}\left(F_{*} R, R\right)$, which turns out to be a torsion free module of rank one. So the R-submodules of $\operatorname{Hom}_{R}\left(F_{*} R, R\right)$ generated by ϕ_{1} and ϕ_{2} has a nonzero intersection, or in other words, there exist nonzero $c_{1}, c_{2} \in R$ and a nonzero element $\phi \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$ such that $\phi=\phi_{1}\left(F_{*}\left(c_{1} \cdot\right)\right)=\phi_{2}\left(F_{*}\left(c_{2} \cdot\right)\right)$. Thus, $\phi\left(F_{*} I_{n+1}\right) \subset I_{n}$ and $\phi\left(F_{*} J_{n+1}\right) \subset J_{n}$. So $\phi\left(F_{*}\left(I_{n+1}+J_{n+1}\right)\right) \subset I_{n}+J_{n}$.
To prove the 'big' ness, assume that there is an α such that $\mathfrak{m}^{\left[p^{n+\alpha}\right]} \subseteq I_{n}$. Then we have $\mathfrak{m}^{\left[p^{n+\alpha}\right]} \subseteq I_{n}+J_{n}$.

Condition C: Let (R, \mathfrak{m}) be an F-finite local ring, I is an ideal and $J_{\bullet}=\left\{J_{n}\right\}_{n \in \mathbb{N}}$ be a family of ideals in R. We say I, J_{\bullet} satisfies Condition \mathbf{C} if
(1) The family J_{\bullet} is weakly p and also weakly p^{-1}.
(2) For each real number t, there is an α such that $\mathfrak{m}^{\left[p^{\alpha+n}\right]} \subseteq I^{[t q]}+J_{n}$ for all n.

Condition C provides the right framework where we can prove existence of h-functions; see Theorem 3.7.

Definition 3.4. Let (R, \mathfrak{m}) be a local or graded ring. Let I be an ideal and $J_{\bullet}=\left\{J_{n}\right\}_{n \in \mathbb{N}}$ be a family of ideals in R - homogeneous when R is graded, such that $I+J_{n}$ is \mathfrak{m}-primary for all n. For a finitely generated R-module M (homogeneous when R is graded) and $s \in \mathbb{R}$, set
(1) $h_{n, M, I, J \bullet}(s)=l\left(\frac{M}{\left(I^{[s q]}+J_{n}\right) M}\right)$.
(2) For an integer d, set

$$
h_{n, M, I, J \bullet, d}(s)=\frac{1}{q^{d}} l\left(\frac{M}{\left(I^{[s q\rceil}+J_{n}\right) M}\right) .
$$

(3) We denote the limit of the sequence of numbers $h_{n, M, I, J_{\bullet}, d}(s)$, whenever it exists, by $h_{M, I, J}, d(s)$.
Whenever one or more of the parameters M, I, J_{\bullet} is clear from the context, we suppress those from $h_{n, M, I, J_{\bullet}}(s), h_{n, M, I, J_{\bullet}, d}(s)$ or $h_{M, I, J_{\bullet}, d}(s)$. In the absence of an explicit d, it should be understood that $d=\operatorname{dim}(M)$. When $J_{n}=J^{\left[p^{n}\right]}$ for some ideal J, $h_{n, M, I, J}, h_{n, M, I, J, d}, h_{M, I, J}$ stand for $h_{n, M, I, J_{\bullet}}, h_{n, M, I, J, d}$ and $h_{M, I, J, d}$ respectively.

Remark 3.5. (1) With the notational conventions and suppression of parameters declared
 it is always clear from the context what $h_{n, M, I, J}$ denotes. So we do not introduce further conventions.
(2) When (R, \mathfrak{m}) is graded, M, I and J_{\bullet} are homogeneous, $h_{n, M, I, J}=h_{n, M_{\mathfrak{m}}, I R_{\mathfrak{m}}, J_{\mathfrak{m}}}$. So once we prove statements involving h_{n} 's in the local setting, the corresponding statements in the graded setting follow.

The following comparison between ordinary powers and Frobenius powers is used throughout this article:
Lemma 3.6. Let R be a ring of characteristic $p>0, J$ be an R-ideal generated by μ elements, $k \in \mathbb{N}$, and $q=p^{n}$ is a power of p. Then $J^{q(\mu+k-1)} \subset\left(J^{[q]}\right)^{k} \subset J^{q k}$.

Proof. The second containment is trivial. We prove the first containment. Let $J=$ $\left(a_{1}, \ldots, a_{\mu}\right)$, then $J^{q(\mu+k-1)}$ is generated by $a_{1}^{u_{1}} \ldots a_{\mu}^{u_{\mu}}$ where $\sum u_{i}=q(\mu+k-1)$. Let $a=a_{1}^{u_{1}} \ldots a_{\mu}^{u_{\mu}}, v_{i}=\left\lfloor u_{i} / q\right\rfloor$ and $b=a_{1}^{v_{1}} \ldots a_{\mu}^{v_{\mu}}$, then since $q v_{i} \leq u_{i}, b^{q}$ divides a. Now $q v_{i} \geq u_{i}-q+1$, so $\sum q v_{i} \geq q(\mu+k-1)+(-q+1) \mu=q(k-1)+\mu>q(k-1)$, so $\sum v_{i} \geq k$. This means $b \in J^{k}$ and $a \in J^{k[q]}=J^{[q] k}$.
Theorem 3.7. Let (R, \mathfrak{m}, k) be an F-finite local domain of dimension d. Let J_{\bullet} be a family of ideals such that there is a non-zero $c \in R$ and $\phi \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$ satisfying c. $J_{n}^{[p]} \subseteq J_{n+1}$ and $\phi\left(F_{*} J_{n+1}\right) \subseteq J_{n}$. Let I be an ideal such that for each $s \in \mathbb{R}$, there is an integer α such that $m^{\left[p^{n+\alpha}\right]} \subseteq I^{[s q]}+J_{n}$ for all n. Set $I_{n}(s)=I^{[s q]}+J_{n}$.
(1) Fix $t \in \mathbb{R}$. Choose $\alpha \in \mathbb{N}$ such that $\mathfrak{m}^{\left[p^{n+\alpha]}\right.} \subseteq I^{[t q]+J_{n}}$ for all n. Then there exists a positive constant C depending only on c, ϕ, I and α^{2} such that for any $s \in(-\infty, t]$,

$$
h_{R, I, J \bullet, d}(s)=\lim _{n \rightarrow \infty} 1 / p^{n d} l_{R}\left(R / I_{n}(s)\right) \text { exists, and }
$$

$$
\begin{equation*}
\left|1 / p^{n d} l_{R}\left(R / I_{n}(s)\right)-h_{R, I, J, d}(s)\right| \leq C / p^{n} \text { for alln } \in \mathbb{N} . \tag{3.1}
\end{equation*}
$$

(2) Given choices I, J_{\bullet} and $t \in \mathbb{R}$, one can choose C depending only on t, such that Equation (3.1) holds on $[0, t]$.
(3) On every bounded subset of \mathbb{R}, the sequence of functions $h_{n, I, J, d}(s)$ converges uniformly to $h_{R, I, J}(s)$.
Proof. (1) When $I=0, I_{n}(s)=J_{n}$, so everything follows from Theorem 3.2.
We assume I is non-zero for the rest of the proof. Note $I_{n}(s)^{[p]}=I^{[s q][p]}+J_{n}^{[p]} \subseteq$ $I^{\lceil s q\rceil p}+J_{n}^{[p]} \subseteq I^{\lceil s p q\rceil}+J_{n}^{[p]}$ as $\lceil s q\rceil p \geq\lceil s q p\rceil$. So

$$
\begin{equation*}
c . I_{n}(s)^{[p]} \subseteq I_{n+1}(s) \tag{3.2}
\end{equation*}
$$

Suppose I is generated by μ-many elements. Then

$$
I^{\lceil s p q\rceil} \subseteq I^{\lceil s q\rceil p-p} \subseteq I^{[p](\lceil s q]-\mu)} ; \quad \text { see Lemma 3.6. }
$$

Fix a non-zero $r \in\left(I^{\mu}\right)^{[p]}$. Then the last containment implies,
$\phi\left(F_{*} r \cdot F_{*} I_{n+1}(s)\right)=\phi\left(F_{*}\left(r I^{[s p q]}\right)\right)+\phi\left(F_{*}\left(r J_{n+1}\right)\right) \subseteq \phi\left(F_{*}\left(I^{[s q][p]}\right)\right)+J_{n} \subseteq I_{n}(s)$ for all $s \in \mathbb{R}$.
Equation (3.2) and Equation (3.3) imply that, for all s, the non-zero elements $c \in R$ and $\phi\left(F_{*} r\right.$.__ $) \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$ endow $I_{n}(s)$ with weakly p and p^{-1} family structures, respectively. The ideal $m^{\left[p^{n+\alpha}\right]}$ is contained in $I_{n}(t)$ and hence in $I_{n}(s)$ for $s \leq t$. The rest follows by applying Theorem 3.2 to the family $I_{n+\alpha}(s)$ for every $s \leq t$. The feasibility of choosing C depending only on c, ϕ, α and r also follows from Theorem 3.2. Since $r \in\left(I^{\mu}\right)^{[p]}$ can be chosen depending only on I, the choice of C depends only on c, ϕ, α

[^1]and I.
(2) Once I, J_{n} satisfying the hypothesis is given and $t \in \mathbb{R}$ is given, c, ϕ, α can be chosen depending only on I, J_{n}, t.
(3) Every bounded subset of \mathbb{R} is contained in some interval $(-\infty, t]$. The dependence of C only on I, J_{n}, t and t implies (3).

The domain assumption is made in the above theorem just so that we can apply Theorem 3.2.

Lemma 3.8. Suppose I and J_{\bullet} satisfy the hypothesis of Theorem 3.7. Suppose there is an integer r such that $I^{r p^{n}} \subseteq J_{n}$. Then $h_{n, I, J \bullet}(s)$ and $h_{I, J_{\bullet}, d}$ are constant on $[r, \infty)$.

The next two propositions produce examples of an ideal I and ideal family J_{\bullet} satisfying Condition C. For specific choices of J_{\bullet} and I, the corresponding corresponding functions $h_{I, J_{\bullet}, d}$ encode widely studied invariants of a prime characteristic ring such as Hilbert-Kunz multiplicity, F-signature, F-threshold. We do not assume R is a domain in the next two examples.

Proposition 3.9. Let J_{\bullet}. be a family of ideals which is a big p and also p^{-1} family. For any ideal I, I, J_{\bullet} satisfy Condition C.

Proof. Since J_{\bullet} is big, there is an α such that $\mathfrak{m}^{\left[p^{n+\alpha}\right]} \subseteq J_{n}$. Thus for every $s \in \mathbb{R}$, $\mathfrak{m}^{\left[p^{n+\alpha}\right]} \subseteq I^{[s q]}+J_{n}$.

When R is a domain, a big p, p^{-1} family J_{\bullet} thus produces an h-function. Thanks to Lemma 3.8 such an $h_{I, J_{\bullet}}$ is eventually constant.

Example 3.10. Examples of J_{\bullet} which are both big p and also p^{-1} include $J_{n}=J^{\left[p^{n}\right]}$, where J is an \mathfrak{m}-primary ideal. Another example of interest is when J_{n} is the sequence of ideals defining F-signature of (R, \mathfrak{m}) which we now recall. Set $p^{\alpha}=\left[k: k^{p}\right]$. Take

$$
J_{n}=\left\{x \in R \mid \phi(x) \in \mathfrak{m}, \text { for all } \phi \in \operatorname{Hom}_{R}\left(F_{*}^{n} R, R\right)\right\}
$$

Then $p^{\alpha n} l\left(R / I_{n}\right)$ coincides with the free rank of $F_{*}^{n} R$: the maximal rank of a free module M such that there is an R-module surjection $F_{*}^{n} R \rightarrow M$; see [Tuc12, Prop 4.5]. The family J_{n} is both p and p^{-1}; and J_{n} contains $\mathfrak{m}{ }^{\left[p^{n}\right]}$. Thanks to Theorem 3.2, the limit

$$
s(R):=\lim _{n \rightarrow \infty}\left(\frac{1}{q}\right)^{\operatorname{dim}(R)} l\left(\frac{R}{J_{n}}\right)
$$

exist. The number $s(R)$ measuring the asymptotic growth of the free rank of $F_{*}^{n} R$ is called the F-signature of R. The ring (R, \mathfrak{m}) is strongly F-regular if and only if $s(R)$ is positive; see [AL03, Thm 0.2]. When R is a domain, for any nonzero ideal I, we have $h_{I, J_{\bullet}}(s)$ whose value for large s is $s(R)$. The continuity, left-right differentiability of such $h_{I, J_{\bullet}}$ are consequences of Theorem 5.4.

The examples of h-functions produced by the result below are central to extending theories of Frobenius-Poincaré and Hilbert-Kunz density functions to the local setting.

Proposition 3.11. For any pair of ideals I, J such that $I+J$ is \mathfrak{m}-primary, the ideal I and the family $J_{n}=J^{\left[p^{n}\right]}$ satisfies Condition \boldsymbol{C}.

Proof. Since $I+J$ is \mathfrak{m}-primary, given a real number $s, \mathfrak{m}^{\left[p^{\alpha}\right]} \subseteq I^{[s]}+J$ for some α. Then $m^{\left[p^{\alpha+n}\right]} \subseteq\left(I^{[s]}+J\right)^{\left[p^{n}\right]} \subseteq I^{[s q]}+J^{[q]}$. So $I^{[s q]}+J^{[q]}$ is a big p and p^{-1} family.

For two \mathfrak{m}-primary ideals I, J, in [Tay18] Taylor considers s-multiplicity(function) which is a scalar multiple of the corresponding $h_{I, J}$. When $J_{n}=J^{[q]}$, our proof of the existence of h function in Theorem 3.7 is not only different from the proof of Theorem 2.1 of [Tay18], but also is still valid when both I and J are not necessarily \mathfrak{m}-primary. Moreover, in Theorem 3.7, the flexibility of choosing C depending only ϕ and c is a byproduct of our proof; this flexibility is crucial in Theorem 3.13 and later.
3.2. Growth of h-function, m-adic continuity. Next, we investigate how $h_{n, I, J}(s)$ changes when the I or J_{\bullet} is replaced by another ideal or ideal family which is \mathfrak{m}-adically close the initial one. The results we prove are used later in Section 6, for example, to prove continuity of Hilbert-Kunz density function $\tilde{g}_{M, J}$ for non \mathfrak{m}-primary J; see Theorem 6.7.

Lemma 3.12. Let R be a noetherian local ring, I, J be two R-ideals such that $I+J$ is \mathfrak{m} primary. Let I^{\prime}, J^{\prime} be two ideals such that $I \subset I^{\prime}, J \subset J^{\prime}$. Then $h_{n, M, I, J}(s) \geq h_{n, M, I^{\prime}, J^{\prime}}(s)$.
Proof. If $I \subset I^{\prime}, J \subset J^{\prime}$ then $\left(I^{[t p\rceil}+J^{[p]}\right) M \subset\left(I^{\lceil[t p]}+J^{\prime[p]}\right) M$, so $l\left(M /\left(I^{[t p\rceil}+J^{[p]}\right) M\right) \geq$ $l\left(M /\left(I^{\prime\lceil t p\rceil}+J^{\prime[p]}\right) M\right)$, which just means $h_{n, M, I, J}(s) \geq h_{n, M, I^{\prime}, J^{\prime}}(s)$.
Theorem 3.13. Let (R, \mathfrak{m}) be a noetherian local ring. Assume I, J_{\bullet} satisfy Condition C.
(1) Fix $s_{0} \in \mathbb{R}$. We can choose t depending only on I, J_{\bullet}, s_{0} such that for any ideals $J \subset \mathfrak{m}^{t}, I \subset I^{\prime}$, and all n,

$$
h_{n, M, I^{\prime}, J \bullet}(s)=h_{n, M, I^{\prime}, J \bullet+J\left[p^{n}\right]}(s) \text { for } s \leq s_{0} .
$$

(2) Assume J_{\bullet} is both big p and p^{-1} family. There exists a constant c such that for any ideals $I^{\prime} \subset \mathfrak{m}^{t}, t \in \mathbb{N}$ and $s \in \mathbb{R}$,

$$
h_{n, M, I, J}(s-c / t) \leq h_{n, M, I+I^{\prime}, J}(s) \leq h_{n, M, I, J}(s) \leq h_{n, M, I+I_{t}, J}(s+c / t) .
$$

(3) Fix $s_{0}>0$. There exists a t_{0} and a constant c, both only depending on s_{0}, I, J_{\bullet} such that for any $t \geq t_{0}, I_{t} \subseteq \mathfrak{m}^{t}$,

$$
h_{n, M, I, J, J_{\bullet}}(s-c / t) \leq h_{n, M, I+I_{t}, J_{\bullet}}(s) \leq h_{n, M, I, J_{\bullet}}(s) \leq h_{n, M, I+I_{t}, J_{\bullet}}(s+c / t),
$$

for $s \leq s_{0}$.
Proof. (1) Let t be the smallest integer such that $\mathfrak{m}^{t[q]} \subset I^{\left[s_{0} q\right\rceil}+J_{n}$ for all n. By the previous lemma, it suffices to consider the case where $J=\mathfrak{m}^{t}$. So for $I \subseteq I^{\prime}$,

$$
I^{\prime\lceil s q\rceil}+J_{n}=I^{\prime\lceil s q\rceil}+J_{n}+\mathfrak{m}^{t[q]} \text { for } s \leq s_{0} \text { and all } n \in \mathbb{N}
$$

proving the desired statement.
(2) Since J_{\bullet} is a big family, we can choose t_{0} such that $\mathfrak{m}^{t_{0}[q]} \subseteq J_{n}$ for all n. We may also assume $I^{\prime}=\mathfrak{m}^{t}$. Let \mathfrak{m} be generated by μ-elements, set $\epsilon_{t}=t_{0} \mu / t$. Then $\mathfrak{m}^{t\left[\epsilon_{t} q\right]} \subseteq \mathfrak{m}^{t_{0} \mu q} \subseteq \mathfrak{m}^{t_{0}[q]} \subset J_{n}$ for all n. So
$\left(I+\mathfrak{m}^{t}\right)^{\lceil s q\rceil}=\sum_{0 \leq j \leq\lceil s q\rceil} I^{\lceil s q\rceil-j} \mathfrak{m}^{t j} \subset I^{\lceil s q\rceil-\left\lceil\epsilon_{\epsilon} q\right\rceil}+\mathfrak{m}^{t[\epsilon t q\rceil} \subset I^{[s q\rceil-\lceil\epsilon t q\rceil}+J_{n} \subseteq I^{\left\lceil\left(s-t_{0} \mu / t\right) q\right\rceil}+J_{n}$
Thus we have

$$
l\left(M /\left(I^{\left\lceil\left(s-t_{0} \mu / t\right) q\right\rceil}+J_{n}\right) M\right) \leq l\left(M /\left(\left(I+\mathfrak{m}^{t}\right)^{\lceil s q\rceil}+J_{n}\right) M\right) \leq l\left(M /\left(I^{\lceil s q\rceil}+J_{n}\right) M\right)
$$

So taking $c=t_{0} \mu$ verifies the first two inequalities. These equalities are independent of s, so we may replace s by $s+c / t$ to get the third inequality.
(3) By (1) we can choose t_{1} depending on s_{0}, I, J_{\bullet} such that $h_{n, M, I^{\prime}, J \bullet \bullet \mathfrak{m}^{t_{1}}[q]}(s)=h_{n, M, I^{\prime}, J \bullet}(s)$ whenever $I \subset I^{\prime}$ and $s \leq s_{0}+1$. By (2), we can choose c depending on $J+\mathfrak{m}^{t_{1}}$ such that $h_{n, M, I, J \cdot+\mathfrak{m}^{t_{1}[q]}}(s-c / t) \leq h_{n, M, I+I_{t}, J_{\bullet}+\mathfrak{m}^{t_{1}[q]}}(s) \leq h_{n, M, I, J+J_{\bullet}+\mathfrak{m}^{t_{1}[q]}}(s) \leq h_{n, M, I+I_{t}, J_{\bullet}+\mathfrak{m}^{t_{1}[q]}}(s+c / t)$, for $I_{t} \subseteq m^{t}$. Take $t_{0}=c$. Since for $t \geq t_{0}$ and $s \leq s_{0}, s+\frac{c}{t} \leq s_{0}+1$, the above chain of inequalities imply

$$
h_{n, M, I, J_{\bullet}}(s-c / t) \leq h_{n, M, I+I_{t}, J_{\bullet}}(s) \leq h_{n, M, I, J_{\bullet}}(s) \leq h_{n, M, I+I_{t}, J_{\bullet}}(s+c / t) .
$$

Assertion (1) of the theorem above allows us to replace J_{\bullet} by a big p and p^{-1} family in questions involving local structure of h-functions. This observation is repeatedly used later; see Theorem 6.7.

Next we prove that the sequence $h_{n, I, J_{\bullet}, d}(s)$ is uniformly bounded on every compact subset. When $J_{\bullet}=J^{\left[p^{n}\right]}$ for some J, we refine the bound to show that $h_{n, I, J \boldsymbol{\bullet}}(s)$ is bounded above by a polynomial of $\operatorname{degree} \operatorname{dim}\left(\frac{R}{J}\right)$ in Theorem 3.16. The uniform (in n) polynomial bound on h_{n} is used in the extension of the theory of Frobenius-Poincaré functions in Lemma 4.1, Theorem 4.3.
Lemma 3.14. In a local ring (R, \mathfrak{m}), let I, J_{\bullet} satisfy condition C. Let M be a finitely generated R-module. Given $s_{0} \in \mathbb{R}$, there is a constant C depending only on s_{0} such that

$$
h_{n, M, I, J_{\bullet}}(s) \leq C . q^{d} \text { for alln. }
$$

Proof. Choose α such that $\mathfrak{m}^{\left[p^{n+\alpha}\right]} \subseteq I^{\left\lceil s_{0} q\right\rceil}+J_{n}$. So for $s \leq s_{0}$,

$$
h_{n, M, I, J \bullet \bullet}(s) \leq l\left(\frac{M}{\mathfrak{m}^{\left[p^{n+\alpha}\right]}} M\right) \leq C q^{d}
$$

The last ineuqality is a consequence of [Mon83].
Remark 3.15. Given a noetherian local ring (R, \mathfrak{m}, k) containing \mathbb{F}_{p}, a field extension $k \subseteq L$ denote by S the \mathfrak{m}-adic completion of $L \otimes_{k} \hat{R}$. Here \hat{R} is the \mathfrak{m}-adic completion of R and \hat{R} can be treated as a k-algebra thanks to the existence of coefficient field of \hat{R}; see [Sta23, tag 0323]. The residue field of the local ring S is isomorphic to L. The natural map $R \rightarrow S$ is faithfully flat. Now given a finite length R-module $M, l_{R}(M)=l_{S}\left(S \otimes_{R} M\right)$. We use this observation to make simplifying assumption on the residue field of R.
Theorem 3.16. Let (R, \mathfrak{m}, k) be a noetherian local ring of dimension d, I, J be two R ideals such that $I+J$ is \mathfrak{m}-primary. Assume I is generated by μ elements, M is generated by ν elements, and $d^{\prime}=\operatorname{dim} R / J$. Then:
(1) There exist a polynomial $P_{1}(s)$ of degree d^{\prime} such that for any $s \geq 0$,

$$
\frac{l\left(M / I^{[s q]}+J^{[q]} M\right)}{l\left(R / \mathfrak{m}^{[q]}\right)} \leq P_{1}(s)
$$

Moreover if $d^{\prime}>0$, the leading coefficient of P_{1} can be taken to be $\frac{\nu e(I, R / J)}{d^{\prime}!}$
(2) There exist a polynomial $P_{2}(s)$ such that

$$
\frac{l\left(M / I^{[s q\rceil}+J^{[q]} M\right)}{q^{d}} \leq P_{2}(s) .
$$

In other words, $h_{n, M, d}(s) / q^{d} \leq P_{2}(s)$.
(3) There exists a polynomial P_{3} of degree d^{\prime} and leading coefficient $\frac{\nu e(I, R / J) e_{H K}(R)}{d^{\prime}!}$ such that for any $s \geq 0$,

$$
\varlimsup_{n \rightarrow \infty} \frac{l\left(M / I^{[s q]}+J^{[q]} M\right)}{q^{d}} \leq P_{3}(s) .
$$

Proof. We may assume that the residue field is perfect by using Remark 3.15
(1) Suppose M is generated by ν many elements. Then

$$
\begin{array}{r}
l\left(M / I^{[s q]}+J^{[q]} M\right) \leq \nu l\left(R / I^{[s q]}+J^{[q]}\right) \\
\leq \nu l\left(R /\left(I^{[s\rceil}\right)^{[q]}+J^{[q]}\right) \\
\leq \nu l\left(F_{*}^{n} R /\left(I^{[s]}+J\right) F_{*}^{n} R\right) \\
\leq \nu \mu_{R}\left(F_{*}^{n} R\right) l\left(R / I^{[s]}+J\right)
\end{array}
$$

Let P_{0} be the Hilbert-Samuel polynomial for the I-adic filtration on $R / J ; P_{0}$ has degree d^{\prime} and leading coefficient $\frac{\nu e(I, R / J)}{d^{\prime}!}$. Fix s_{0} such that $l\left(R / I^{\lceil s\rceil}+J\right)=P_{0}(\lceil s\rceil)$ and P_{0} is non-decreasing for $s \geq s_{0}$. Thus for $s \geq s_{0}$,

$$
l\left(R / I^{\lfloor s\rfloor}+J\right) \leq P_{0}(s+1)
$$

When $\frac{R}{J}$ has Krull dimension zero, $P_{0}(s)=l(R / J)$ and $l\left(R / I^{[s]}+J\right) \leq P_{0}(s+1)$ for all s, so we can take the desired P_{1} to be $P_{0}(s+1)$. When R / J has positive Krull dimension, we can add a suitable positive constant to $P_{0}(s+1)$ to get a P_{1} so that $l\left(R / I^{\lfloor s\rfloor}+J\right) \leq P_{1}(s)$ on $[0,2]$ and thus on \mathbb{R}.
(2) Since $\lim _{n \rightarrow \infty} l\left(R / \mathfrak{m}^{[q]}\right) / q^{d}$ exists,

$$
C=\sup _{n} l\left(R / \mathfrak{m}^{[q]}\right) / q^{d}
$$

exists. So for any $n, l\left(R / \mathfrak{m}^{[q]}\right) / q^{d} \leq C$, and $P_{2}=C P_{1}$ satisfies (2).

$$
\begin{array}{r}
\varlimsup_{n \rightarrow \infty} \frac{l\left(M / I^{[s q]}+J^{[q]} M\right)}{q^{d}} \tag{3}\\
\leq \varlimsup_{n \rightarrow \infty} \frac{l\left(M / I^{[s q]}+J^{[q]} M\right)}{l\left(R / \mathfrak{m}^{[q]}\right)} \varlimsup_{n \rightarrow \infty} \frac{l\left(R / \mathfrak{m}^{[q]}\right)}{q^{d}} \\
\leq e_{H K}(R) P_{1}(s) .
\end{array}
$$

So $P_{3}=e_{H K}(R) P_{1}$ works.
3.3. Lipschitz continuity of h-functions, application of a 'convexity technique'. Proving continuity of $h_{R, I, J_{0}-}$ when R is a domain is more involved than proving its existence. In this subsection, we develop results aiding the proof of Lipschitz continuity of $h_{R, I, J_{\bullet}}$; see Theorem 3.20. When $J_{n}=J^{[q]}$, these results are used to prove existence and continuity of the h-function of a finitely generated module in Theorem 3.30, by reducing the problem to the case where R is reduced. The key result aiding these applications is Theorem 3.19. We prove this by utilizing the monotonicity of a certain numerical function. This 'convexity technique' is repeatedly used later to prove left and right differentiability of the h-function in among other properties. The required monotonicity result appears in Lemma 3.17. This is an adaptation and generalization of Boij-Smith's result in [BS15] which is suitable for our purpose.

Lemma 3.17. Let (R, \mathfrak{m}) be a noetherian local ring, I be an \mathfrak{m}-primary ideal generated by μ elements, M be a finitely generated R-module, S be the polynomial ring of μ-variables over $\frac{R}{\mathrm{~m}}$. Then the function $i \rightarrow l\left(I^{i} M / I^{i+1} M\right) / l\left(S_{i}\right)$ is decreasing for $i \geq 0$.

Proof. Consider the associated graded ring $g r_{I}(R)$. Since I is generated by a set of μ elements, as a graded ring $g r_{I}(R)$ is a quotient of the standard graded polynomial ring $R / I\left[T_{1}, \ldots, T_{\mu}\right]$ over R / I. Recall $S=\frac{R}{\mathrm{~m}}\left[T_{1}, \ldots, T_{\mu}\right]$. Since $M / I M$ is Artinian, there exists a filtration

$$
0=N_{0} \subset N_{1} \subset \ldots \subset N_{l}=M / I M, \text { such that } N_{j+1} / N_{j}=\frac{R}{\mathfrak{m}} \text { for } 0 \leq j \leq l-1 .
$$

Let M_{j} be the $g r_{I}(R)$-submodule of $g r_{I}(M)$ spanned by N_{j}. Then M_{j+1} / M_{j} is annihilated by $\mathfrak{m} g r_{I}(R)$. So it is naturally a $g r_{I}(R) / \mathfrak{m} g r_{I}(R)$-module, hence is an S-module, and it is generated in degree 0 . So by Theorem 1.1 of [BS15], for any $i \geq 0$,

$$
l\left(M_{j+1} / M_{j}\right)_{i} / l\left(S_{i}\right) \leq l\left(M_{j+1} / M_{j}\right)_{i+1} / l\left(S_{i+1}\right)
$$

Since truncation at degree i is an exact functor from $g r_{I}(R)$-modules to R-modules, taking sum over $0 \leq j \leq l-1$ we get $l\left(M_{l}\right)_{i} / l\left(S_{i}\right) \leq l\left(M_{l}\right)_{i+1} / l\left(S_{i+1}\right)$. Since $M_{l}=g r_{I}(R) N_{l}=$ $g r_{I}(M)$, we are done.

When I is a principal ideal, the above lemma manifests into the following easily verifiable result.

Example 3.18. Let R be a noetherian local ring, f be an element in R such that $R / f R$ has finite length. Then for any $j \geq i, l\left(f^{i} R / f^{i+1} R\right) \geq l\left(f^{j} R / f^{j+1} R\right)$. This means that the function $i \rightarrow l\left(R / f^{i} R\right)$ is convex on \mathbb{N}; see Definition 5.2.

Theorem 3.19. Let R be a noetherian local ring, M be a finitely generated module of dimension d. Suppose I, J_{\bullet} satisfy Condition C. Fix $0<s_{1}<s_{2}<\infty \in \mathbb{R}$. Then there is a constant C and a power $q_{0}=p^{n_{0}}$ that depend on s_{1}, s_{2}, but independent of n such that for any $s_{1} \leq s \leq s_{2}-1 / q$ and $q \geq q_{0}$

$$
l\left(\frac{\left(I^{\lceil s q\rceil}+J_{n}\right) M}{\left(I^{\lceil s q\rceil+1}+J_{n}\right) M}\right) \leq C q^{d-1}
$$

In other words, whenever $s_{1} \leq s \leq s_{2}-1 / q$ and $q \geq q_{0}$,

$$
\left|h_{n, M}(s+1 / q)-h_{n, M}(s)\right| \leq C q^{d-1} .
$$

Proof. We may assume $s_{1}, s_{2} \in \mathbb{Z}[1 / p]$. Otherwise, since $\mathbb{Z}[1 / p]$ is dense in \mathbb{R}, we can choose $s_{1}^{\prime} \in\left(0, s_{1}\right) \cap \mathbb{Z}[1 / p], s_{2}^{\prime} \in\left(s_{2}, \infty\right) \cap \mathbb{Z}[1 / p]$ and replace s_{1}, s_{2} by $s_{1}^{\prime}, s_{2}^{\prime}$. Choose $s_{3} \in \mathbb{Z}[1 / p]$ such that $0<s_{3}<s_{1}$ and choose q_{0} such that $s_{1} q_{0}, s_{2} q_{0}, s_{3} q_{0} \in \mathbb{Z}$. Let I be generated by a set of μ many elements. Applying Lemma 3.17 to the module $M / J_{n} M$ we know for any $0 \leq t \leq\lceil s q\rceil$,

$$
\frac{l\left(\frac{I^{[s q]}\left(M / J_{n} M\right)}{I^{s q q} \mid+1\left(M / J_{n} M\right)}\right)}{\binom{\mu+[s q]-1}{\mu-1}} \leq \frac{l\left(\frac{I^{t}\left(M / J_{n} M\right)}{\left.I^{t+1}(M) J_{n} M\right)}\right)}{\binom{\mu+t-1}{\mu-1}} .
$$

Rewritten, the above inequality yields

$$
\frac{l\left(\frac{\left(I^{[s q]}+J_{n}\right) M}{\left(I^{[s q]+1+1}+J_{n}\right) M}\right)}{\binom{\mu+[s q]-1}{\mu-1}} \leq \frac{l\left(\frac{\left(I^{t}+J_{n}\right) M}{\left(I^{t+1}+J_{n}\right) M}\right)}{\binom{\mu+t-1}{\mu-1}} .
$$

Thus for $s_{1} \leq s \leq s_{2}-\frac{1}{q}$,

$$
\begin{aligned}
\left(\lceil s q\rceil-s_{3} q\right) l\left(\frac{\left(I^{\lceil s q\rceil}+J_{n}\right) M}{\left(I^{\lceil s q\rceil+1}+J_{n}\right) M}\right) & \leq\binom{\mu+\lceil s q\rceil-1}{\mu-1} \sum_{t=s_{3} q}^{\lceil s q\rceil-1} l \frac{l\left(\frac{\left(I^{t}+J_{n}\right) M}{\left(I^{t+1}+J_{n}\right) M}\right)}{\binom{\mu+-1}{\mu-1}} \\
& \leq \frac{\binom{\mu+\lceil s q\rceil-1}{\mu-1}}{\binom{\mu+s_{3} q-1}{\mu-1}} l\left(\frac{\left(I^{\lceil s q\rceil}+J_{n}\right) M}{\left(I^{s_{3} q}+J_{n} M\right.}\right) \\
& \leq \frac{\left(\begin{array}{c}
\mu\lceil\langle-1
\end{array}\right)}{\binom{\mu+s_{3} q-1}{\mu-1}}\left[l\left(\frac{M}{\left(I^{\lceil s q\rceil}+J_{n}\right) M}\right)-l\left(\frac{M}{\left(I^{s_{3} q}+J_{n}\right) M}\right)\right] \\
& \leq \frac{\left(\begin{array}{c}
\mu+s_{2} q-1
\end{array}\right)}{\binom{\mu+s_{3} q-1}{\mu-1}}\left[l\left(\frac{M}{\left(I^{s_{2} q}+J_{n}\right) M}\right)-l\left(\frac{M}{\left(I^{s_{3} q}+J_{n}\right) M}\right)\right] .
\end{aligned}
$$

Therefore for $s_{1} \leq s \leq s_{2}-\frac{1}{q}$ and $q \geq q_{0}$,

$$
l\left(\frac{\left(I^{\lceil s q\rceil}+J_{n}\right) M}{\left(I^{[s q\rceil+1}+J_{n}\right) M}\right) \leq \frac{1}{s_{1} q-s_{3} q} \frac{\left(\begin{array}{c}
\mu+s_{2} q-1
\end{array}\right)}{\binom{\mu+s_{3} q-1}{\mu-1}}\left[l\left(\frac{M}{\left(I^{s_{2} q}+J_{n}\right) M}\right)-l\left(\frac{M}{\left(I^{s_{3} q}+J_{n}\right) M}\right)\right] \leq C q^{d-1} .
$$

By Lemma 3.14, we can choose a constant C^{\prime} depending only on s_{2} such that for $s \leq s_{2}$,

$$
l\left(\frac{M}{\left(I^{s q}+J_{n}\right) M}\right) \leq C^{\prime} q^{d}
$$

Since $\binom{\mu+s_{2} q-1}{\mu-1} /\binom{\mu+s_{3} q-1}{\mu-1}$ is bounded above by a constant depending on s_{1}, s_{3} and s_{3} depends only on s_{2}, we can choose C depending only on s_{1}, s_{2} such that for all n and $q \geq q_{0}$,

$$
l\left(\frac{\left(I^{\lceil s q\rceil}+J_{n}\right) M}{\left(I^{\lceil s q\rceil+1}+J_{n}\right) M}\right) \leq C q^{d-1}
$$

Here C is a constant only depending on s_{1}, s_{2}, s_{3}, and s_{3} depends only on s_{1}.
Therefore, whenever $h_{M, I, J_{\bullet}}$ exists, it is locally Lipschitz continuous away from zero.
Theorem 3.20. Let I be an ideal and J_{\bullet} be a family of ideals satisfying Condition C in a domain (R, \mathfrak{m}) of Krull dimension d. Given real numbers $0<s_{1}<s_{2}$, there is a constant C depending only in s_{1}, s_{2} such that for any $x, y \in\left[s_{1}, s_{2}\right]$,

$$
\left|h_{R}(x)-h_{R}(y)\right| \leq C|x-y|
$$

Proof. Given s_{1}, s_{2} as above and x, y in $\left[s_{1}, s_{2}\right]$, by Theorem 3.19, we can choose a constant C depending only on s_{1}, s_{2} such that

$$
\left|h_{n, R}(x)-h_{n, R}(y)\right|=\left|h_{n, R}\left(\frac{\lceil q\rceil}{q}\right)-h_{n, R}\left(\frac{\lceil q y\rceil}{q}\right)\right| \leq C\left|\frac{\lceil q x\rceil}{q}-\frac{\lceil q y\rceil}{q}\right| q^{d} \text { for all } n
$$

Divide both sides by q^{d} and take limit as n approaches infinity. Since for any real number $s, \frac{h_{n}(s)}{q^{d}}$ and $\lceil q s\rceil / q$ converge to $h_{R}(s)$ and s respectively,

$$
\left|h_{R}(x)-h_{R}(y)\right| \leq C|x-y|
$$

Lemma 3.21. Assume the residue field of R is perfect and M is a module of dimension d. For each integer $n_{0} \geq 0$ and fixed $0<s_{1}<s_{2}<\infty \in \mathbb{R}$, there is a constant C independent of n such that

$$
\left|h_{n+n_{0}, M, I, J}(s)-h_{n, F_{*}^{n_{0}} M, I, J}(s)\right| \leq C q^{d-1}
$$

for any $s_{1} \leq s \leq s_{2}$.
Proof. For any $q_{0},\left\lceil s q q_{0}\right\rceil \leq\lceil s q\rceil q_{0} \leq\left\lceil s q q_{0}\right\rceil+q_{0}$. We have,

$$
\begin{gathered}
\left|h_{n+n_{0}, M, I, J}(s)-h_{n, F_{*}^{n_{0}} M, I, J, d}(s)\right| \\
=\left|l\left(M /\left(I^{\left[s q q_{0}\right\rceil}+J^{\left[q q_{0}\right]}\right) M\right)-l\left(F_{*}^{n_{0}} M /\left(I^{[s q\rceil}+J^{[q]}\right) F_{*}^{n_{0}} M\right)\right| \\
=\left|l\left(M /\left(I^{\left[s q q_{0}\right]}+J^{\left[q q_{0}\right]}\right) M\right)-l\left(M /\left(I^{[s q\rceil\left[q_{0}\right]}+J^{\left[q q_{0}\right]}\right) M\right)\right| \\
\left.\left.=\left(l\left(I^{\left[s q q_{0}\right]}+J^{\left[q q_{0}\right]}\right) M /\left(I^{\left[s q q_{0}\right.}+J^{\left[q q_{0}\right]}\right) M\right)+l\left(I^{[s q\rceil q_{0}}+J^{\left[q q_{0}\right]}\right) M /\left(I^{[s q\rceil\left[q_{0}\right]}+J^{\left[q q_{0}\right]}\right) M\right)\right) .
\end{gathered}
$$

Note that $1 / q_{0}\left\lceil s q q_{0}\right\rceil \geq s q \geq\lceil s q\rceil-1$, so $\lceil s q\rceil q_{0} \leq\left\lceil s q q_{0}\right\rceil+q_{0}$, so $I^{\left\lceil s q q_{0}\right\rceil+q_{0}} \subset I^{\lceil s q\rceil q_{0}}$.
Suppose I is generated by μ elements, then by Lemma 3.6, $I^{[s q\rceil q_{0}} \subset I^{([s q]-\mu+1)\left[q_{0}\right]}$. Now by Theorem 3.19, we can choose a constant C depending only on s_{1}, s_{2} such that for all $s \in\left[s_{1}, s_{2}\right]$,

$$
\begin{gathered}
l\left(\frac{\left(I^{\left[s q q_{0}\right]}+J^{\left[q q_{0}\right]}\right) M}{\left(I^{[s q] q_{0}}+J^{\left[q q_{0}\right]}\right) M}\right)+l\left(\frac{\left(I^{[s q] q_{0}}+J^{\left[q q_{0}\right]}\right) M}{\left(I^{[s q]\left[q_{0}\right]}+J^{\left[q q_{0}\right]}\right) M}\right) \\
\leq l\left(\frac{\left(I^{\left[s q q_{0}\right]}+J^{\left[q q_{0}\right]}\right) M}{\left(I^{\left[s q q_{0}\right]+q_{0}}+J^{\left[q q_{0}\right]}\right) M}\right)+l\left(\frac{\left(I^{(\lceil q q]-\mu+1)\left[q_{0}\right]}+J^{\left[q q_{0}\right]}\right) M}{\left(I^{[s q]\left[q_{0}\right]}+J^{\left[q q_{0}\right]}\right) M}\right) \leq C q^{d-1} .
\end{gathered}
$$

The lemma above allows us to replace M by $F_{*}^{n_{0}} M$. Since we may replace R by $R /$ ann $F_{*}^{n_{0}} M$ and for large enough n_{0}, ann $F_{*}^{n_{0}} M$ contains the nilradical of R; case, we may assume R is reduced while proving the existence of $h_{M, I, J}$.

Corollary 3.22. Assume the residue field of R is perfect. For each $n_{0} \geq 0, h_{M, I, J, d}(s)$ exists if and only if $h_{F_{*}^{n_{0}} M, I, J, d}(s)$ exists, and if they both exist then

$$
q_{0}^{d} h_{M, I, J, d}(s)=h_{F_{*}^{n_{0}} M, I, J, d}(s) .
$$

3.4. Existence of $h_{M, I, J}$. For a noetherian local ring $(R, \mathfrak{m}), R$-ideals I, J such that $I+J$ is \mathfrak{m}-primary and a finitely generated module, we prove the existence of $h_{M, I, J}$ in Theorem 3.30. We prove preparatory results to reduce this problem to the situation where $M=R$ and R is a domain. We prove the local Lipschitz continuity of $h_{M, I, J}$ in Theorem 3.31. Recall:

Definition 3.23. Set Assh $R=\{P \in \operatorname{Spec} R: \operatorname{dim} R=\operatorname{dim} R / P\}$.
Lemma 3.24. [Mon83, Proof of Lemma 1.3]If M, N are two R-modules such that $M_{P} \cong$ $N_{P}, \forall P \in \operatorname{Assh} R$. Then there is an exact sequence

$$
0 \rightarrow N_{1} \rightarrow M \rightarrow N \rightarrow N_{2} \rightarrow 0
$$

such that $\operatorname{dim} N_{1}, \operatorname{dim} N_{2} \leq \operatorname{dim}(R)-1$. Moreover it breaks up into two short exact sequences:

$$
\begin{aligned}
& 0 \rightarrow N_{1} \rightarrow M \rightarrow N_{3} \rightarrow 0 \\
& 0 \rightarrow N_{3} \rightarrow N \rightarrow N_{2} \rightarrow 0
\end{aligned}
$$

such that $\operatorname{dim}\left(N_{3}\right)<\operatorname{dim}(R)$.
Lemma 3.25. Let $N \subset M$ be two R-modules of finite length, and take $a \in R$, then $l(M / a M) \geq l(N / a N)$.

Proof. Consider the commutative diagram,

We see the map $0:_{N} a \rightarrow 0:_{M} a$ is injective. By the additivity of length on short exact sequences we see $l(M / a M)=l\left(0:_{M} a\right) \geq l\left(0:_{N} a\right)=l(N / a N)$.
Lemma 3.26. Let $M_{1}, M_{2}, M_{3}, M_{4}$ be four submodules of an R-module M such that $M_{3} \subset M_{1}, M_{4} \subset M_{2}$. Then $M_{1}+M_{2} / M_{3}+M_{4}$ has a filtration with factors which are quotients of M_{1} / M_{3} and M_{2} / M_{4}. In particular, if M_{1} / M_{3} and M_{2} / M_{4} have finite lengths then so does $M_{1}+M_{2} / M_{3}+M_{4}$ and $l\left(M_{1}+M_{2} / M_{3}+M_{4}\right) \leq l\left(M_{1} / M_{3}\right)+l\left(M_{2} / M_{4}\right)$.

Proof. Consider the filtration

$$
0 \subseteq \frac{M_{3}+M_{2}}{M_{3}+M_{4}} \subseteq \frac{M_{1}+M_{2}}{M_{3}+M_{4}}
$$

The factors in the above filtration, namely $M_{3}+M_{2} / M_{3}+M_{4}$ and $M_{1}+M_{2} / M_{3}+M_{2}$, are quotients of M_{2} / M_{4} and M_{1} / M_{3} respectively.

Lemma 3.27. Let (R, \mathfrak{m}, k) be a local ring of dimension d. Suppose I, J. satisfy condition \boldsymbol{C}, and M is a module of dimension $d^{\prime} \leq d-1$. Fix $s_{0} \in \mathbb{R}$. Then there are constants C_{1}, C_{2} depending on sob independent of n such that $l\left(\operatorname{Tor}_{0}^{R}\left(R /\left(I^{\lceil s q\rceil}+J_{n}\right), M\right)\right) \leq$ $C_{1} q^{d-1}$ and $l\left(\operatorname{Tor}_{1}^{R}\left(R /\left(I^{[s q\rceil}+J_{n}\right), M\right)\right) \leq C_{2} q^{d-1}$ for any $s \leq s_{0}$. Moreover if J_{\bullet} is big, C_{1}, C_{2} can be chosen independent of s.

Proof. Since I, J_{\bullet} satisfy Condition C, we can find an \mathfrak{m}-primary ideal J such that for $s \leq s_{0}, J^{[q]} \subseteq I^{[s q]}+J_{n}$ for all n. As $M / J^{[q]} M$ surjects onto $\operatorname{Tor}_{0}^{R}\left(R /\left(I^{[s q]}+J_{n}\right), M\right)$, and we can find a constant C_{1}, such that $l\left(M / J^{[q]} M\right) \leq C_{1} q^{\operatorname{dim} M}, l\left(\operatorname{Tor}_{0}^{R}\left(R / I^{[s q]}+J^{[q]}, M\right)\right) \leq$ $C_{1} q^{d-1}$.

To see the bound on $T o r_{1}$, for a fixed $s \leq s_{0}$, consider the exact sequence:

$$
0 \rightarrow\left(I^{[s q\rceil}+J_{n}\right) / J^{[q]} \rightarrow R / J^{[q]} \rightarrow R /\left(I^{[s q\rceil}+J^{[q]}\right) \rightarrow 0
$$

So by the long exact sequence of Tor, it suffices to show that we can choose C_{2} satisfying

$$
l\left(\operatorname{Tor}_{1}^{R}\left(R / J^{[q]}, M\right)\right) \leq C_{2} q^{d-1} \text { and } l\left(\frac{I^{\lceil s q\rceil}+J_{n}}{J^{[q]}} \otimes M\right) \leq C_{2} q^{d-1}
$$

Choosing a C_{2} satisfying the first inequality is possible thanks to [HMM04, Lemma 1.1]. For the remaining inequality, by taking a prime cyclic filtration of M, we may assume $M=R / P$ for some $P \in \operatorname{Spec}(R)$ with $\operatorname{dim} M \leq \operatorname{dim} R-1$. In this case, $P \notin \operatorname{Assh}(R)$. So we can choose $b \in P$ such that $\operatorname{dim} R / b R \leq \operatorname{dim} R-1$. Taking $M=R / J^{[q]}$ and $N=I^{[s q]}+J^{[q]} / J^{[q]}$ in Lemma 3.25, we see that we can enlarge C_{2} independently of s and q so that

$$
\begin{aligned}
& l\left(l\left(\frac{I^{[s q\rceil}+J_{n}}{J^{[q]}} \otimes_{R} R / P\right) \leq l\left(l\left(\frac{I^{[s q\rceil}+J_{n}}{J^{[q]}} \otimes_{R} R / b R\right)\right.\right. \\
& \leq l\left(R / J^{[q]} \otimes_{R} R / b R\right)=l\left(R / b R+J^{[q]}\right) \leq C_{2} q^{d-1} .
\end{aligned}
$$

So we are done.
Lemma 3.28. Let M, N be two finitely generated R-modules that are isomorphic at $P \in$ Assh R. Then for any $t>0$, there is a constant C depending on M, I, J, t but independent of n such that for any $s<t$

$$
\left|h_{n, M, d}(s)-h_{n, N, d}(s)\right| \leq C / q
$$

Moreover if J is \mathfrak{m}-primary, then C can be chosen independently of t.
Proof. By Lemma 3.24, there is an exact sequence

$$
0 \rightarrow N_{1} \rightarrow M \rightarrow N \rightarrow N_{2} \rightarrow 0
$$

such that $\operatorname{dim} N_{1}, \operatorname{dim} N_{2} \leq d-1$. And it breaks up into two short exact sequences:

$$
\begin{aligned}
& 0 \rightarrow N_{1} \rightarrow M \rightarrow N_{3} \rightarrow 0 \\
& 0 \rightarrow N_{3} \rightarrow N \rightarrow N_{2} \rightarrow 0
\end{aligned}
$$

Now by the long exact sequence of Tor we get

$$
\begin{gathered}
\left|l\left(M /\left(I^{[s q]}+J^{[q]}\right) M\right)-l\left(N_{3} /\left(I^{[s q]}+J^{[q]}\right) N_{3}\right)\right| \leq l\left(N_{1} /\left(I^{[s q]}+J^{[q]}\right) N_{1}\right) \\
\left|l\left(N_{3} /\left(I^{[s q]}+J^{[q]}\right) N_{3}\right)-l\left(N /\left(I^{[s q]}+J^{[q]}\right) N\right)\right| \leq l\left(N_{2} /\left(I^{[s q]}+J^{[q]}\right) N_{2}\right)+l\left(\operatorname{Tor}_{1}^{R}\left(R /\left(I^{[s q]}+J^{[q]}\right), N_{2}\right)\right)
\end{gathered}
$$

Thus by Lemma 3.27, there is a constant C such that

$$
\left|l\left(M /\left(I^{\lceil s q\rceil}+J^{[q]}\right) M\right)-l\left(N /\left(I^{\lceil s q\rceil}+J^{[q]}\right) N\right)\right| \leq C q^{d-1}
$$

Lemma 3.29. Let (R, \mathfrak{m}, k) be a local ring, I, J be two ideals such that $I+J$ is \mathfrak{m} primary, and M be a finitely generated R-module. For any $0<s_{1}<s_{2}<\infty$, there is a constant C depending on M, I, J, s_{1}, s_{2} but independent of n such that for any $s_{1} \leq s \leq s_{2}$

$$
\left|h_{n+1, M, d}(s)-h_{n, M, d}(s)\right| \leq C / q
$$

Proof. We may assume that the residue field is perfect by using Remark 3.15. Choose sufficiently large n_{0} such that $R / a n n F_{*}^{n_{0}} M$ is reduced. The positive constants C_{1}, C_{2}, C_{3} chosen below depends only on M, I, J, s_{1}, s_{2} and is independent of n. By Lemma 3.21,

$$
\left|h_{n+n_{0}, M, I, J}(s)-h_{n, F_{*}^{n_{0}} M, I, J}(s)\right| \leq C_{1} q^{d-1}
$$

and

$$
\left|h_{n+n_{0}+1, M, I, J}(s)-h_{n+1, F_{*}^{n_{0}} M, I, J}(s)\right| \leq C_{1} q^{d-1}
$$

So it suffices to prove existence of a suitable C such that

$$
\left|h_{n+1, F_{*}^{n_{0}} M, d}(s)-h_{n, F_{*}^{n_{0}} M, d}(s)\right| \leq C / q .
$$

Replacing M by $F_{*}^{n_{0}} M$ and R by $R / a n n F_{*}^{n_{0}} M$, so we may assume R is reduced. In this case,

$$
\left|h_{n+1, M, I, J}(s)-h_{n, F_{*} M, I, J}(s)\right| \leq C_{2} q^{d-1} .
$$

Thanks to the reducedness of R, the localizations of $M^{\oplus p^{d}}$ and $F_{*} M$ are isomorphic at all $P \in A s s h R$. So by Lemma 3.28,

$$
\left|h_{n, F_{*} M, I, J}(s)-p^{d} h_{n, M, I, J}(s)\right| \leq C_{3} q^{d-1} .
$$

Thus one can choose a C which depends only on M, I, J, s_{1}, s_{2} such that for all $s \in\left[s_{1}, s_{2}\right]$ and $n \in \mathbb{N}$,

$$
\left|h_{n+1, M, I, J}(s)-p^{d} h_{n, M, I, J}(s)\right| \leq C q^{d-1} .
$$

Dividing by $(p q)^{d}$, we get

$$
\left|h_{n+1, M, I, J, d}(s)-h_{n, M, I, J, d}(s)\right| \leq C / q .
$$

Theorem 3.30. Let (R, \mathfrak{m}, k) be a noetherian local ring, I, J be two R-ideals such that $I+J$ is \mathfrak{m}-primary, and M is a finitely generated R-module. Then for every $s \in \mathbb{R}$,

$$
\frac{1}{q^{\operatorname{dim}(M)}} \lim _{n \rightarrow \infty} h_{n, M, I, J}(s)=h_{M, I, J}(s)
$$

exists. Moreover the convergence is uniform on $\left[s_{1}, s_{2}\right]$ for any $0<s_{1}<s_{2}<\infty$.

Proof. By replacing R by $R / \operatorname{ann}(M)$, we may assume $\operatorname{dim}(M)=\operatorname{dim}(R)$. Given s_{1}, s_{2} as in the statement, it follows from Lemma 3.29 that $h_{n, M, I, J}(s) / q^{\operatorname{dim}(M)}$ is uniformly Cauchy on $\left[s_{1}, s_{2}\right]$. So the theorem follows.

We also have:
Theorem 3.31. Let (R, \mathfrak{m}, k) be a local ring of dimension d, I, J be two R-ideal, $I+J$ is \mathfrak{m}-primary, and M be a finitely generated R-module. Then:
(1) $h_{M}(s)$ is Lipschitz continuous on $\left[s_{1}, s_{2}\right]$ for any $0<s_{1}<s_{2}<\infty$. Consequently, it is continuous on $(0, \infty)$.
(2) $h_{M}(s)$ is increasing. It is 0 on $(-\infty, 0]$. It is continuous if and only if it is continuous at 0 , if and only if $\lim _{s \rightarrow 0^{+}} h_{M}(s)=0$. The limit $\lim _{s \rightarrow 0^{+}} h_{M}(s)$ always exists and is nonnegative.
(3) Assume J is \mathfrak{m}-primary. Then for $s \gg 0, h_{n, M}(s)=e_{H K}(J, M)$ is a constant.
(4) There is a polynomial $P(s)$ of degree $\operatorname{dim} R / J$ such that $h_{M}(s) \leq P(s)$ on \mathbb{R}.

Proof. (1) An argument similar to that in the proof of Theorem 3.20 with R replaced by M and $J_{n}=J^{[q]}$ yields a proof. The difference is that when $J_{n}=J^{[q]}$, we know the existence of $h_{M, I, J}$.
(2) If $s_{1} \leq s_{2}$, then $\left\lceil s_{1} q\right\rceil \leq\left\lceil s_{2} q\right\rceil$, so $I^{\left\lceil s_{2} q\right\rceil} \subset I^{\left\lceil s_{1} q\right\rceil}$. This implies

$$
l\left(M /\left(I^{\left[s_{1} q\right]}+J^{[q]}\right) M\right) \leq l\left(M /\left(I^{\left[s_{2} q\right]}+J^{[q]}\right) M\right)
$$

which is just

$$
h_{n, M}\left(s_{1}\right) \leq h_{n, M}\left(s_{2}\right) .
$$

So after dividing $p^{n \operatorname{dim} M}$ and let $n \rightarrow \infty$, we get $h_{M}\left(s_{1}\right) \leq h_{M}\left(s_{2}\right)$. This implies $h_{M}(s)$ is increasing; so in particular the $\operatorname{limit}^{\lim }{ }_{s \rightarrow 0^{+}} h_{M}(s)$ always exists and is at least $h_{M}(0)$. If $s \leq 0$, then $\lceil s q\rceil \leq 0$, so $I^{\lceil s q\rceil}=R$. Thus $M /\left(I^{\left[s_{1} q\right\rceil}+J^{[q]}\right) M=0$ and $h_{n, M}(s)=0$ for any n, so $h_{M}(s)=0$. So $h_{M}(s)$ is continuous on $(-\infty, 0)$ and $(0, \infty)$, and $\lim _{s \rightarrow 0^{-}} h_{M}(s)=0=h_{M}(0)$, so we get (2).
(3) Let J be generated by μ elements. For $s \gg 0, I^{[s / \mu]} \subset J$. So $I^{[s q]} \subset$ $I^{[s / \mu] q \mu} \subset J^{q \mu} \subset J^{[q]}$, so $h_{n, M}(s)=l\left(M / J^{[q]} M\right)$ and $h_{M}(s)=\lim _{n \rightarrow \infty} \frac{l\left(M / J^{[q]} M\right)}{q^{d}}=$ $e_{H K}(J, M)$. If $s=0$ then $I^{\lceil s q\rceil}=R$ so $h_{n, M}(0)=0$.
(4) This is a corollary of Theorem 3.16 and Theorem 3.30.

The associativity formula for h-function below follows directly from Lemma 3.28.
Proposition 3.32. Let M be a d-dimensional finitely generated R-module. Let $P_{1}, P_{2}, \ldots, P_{t}$ be the d-dimensional minimal primes in the support of M. Then,

$$
h_{M, I, J, d}(s)=\sum_{j=1}^{t} l_{R_{P_{j}}}\left(M_{P_{j}}\right) h_{R / P_{j}, I R / P_{j}, J R / P_{j}, d}(s) .
$$

4. Frobenius-Poincaré function in the local setting

We prove the existence of Frobenius-Poincaré functions in the local setting. Given an ideal I and a family J_{\bullet} and a finitely generated R-module M, set

$$
f_{n, M, I, J}(s)=h_{n, M, I, J_{\bullet}}\left(s+\frac{1}{q}\right)-h_{n, M, I, J_{\bullet}}(s) .
$$

When $J_{n}=J^{[q]}, f_{n, M, I, J}(s)$ represents $f_{n, M, I, J \cdot}(s)$. We drop one or more parameters in $f_{n, M, I, J_{\bullet}}$ when there is no resulting confusion. For the rest of this article, we denote the
imaginary part a complex number y by $\Im y$ and the open lower half complex plane by Ω, i.e. $\Omega=\{y \in \mathbb{C} \mid \Im y<0\}$.

Lemma 4.1. Let (R, \mathfrak{m}, k) be a local ring of dimension d, I, J be two R-ideal, $I+J$ is \mathfrak{m}-primary, and M be a finitely generated R-module. Consider the function defined by the infinite series

$$
F_{n, M, I, J}(y):=\sum_{j=0}^{\infty} f_{n, M, I, J}(j / q) e^{-i y j / q}
$$

Then $F_{n, M, I, J}(y)$ defines a holomorphic function on Ω. We often drop one or more parameters in $F_{n, M, I, J}$ when there is no chance of confusion.

Proof. There is a polynomial P such that $f_{n, M}(s) \leq h_{n, M}(s+1) \leq P(s)$ for any s; see Theorem 3.16, Theorem 3.31, assertion (2). Thus

$$
\left|f_{n, M, R, I, J}(j / q) e^{-i y j / q}\right| \leq P(j / q) e^{j \Im y / q}
$$

Since for fixed $\epsilon>0$, the series $\sum_{0 \leq j<\infty} P(j / q) e^{-j \epsilon / q}$ converges, on the region where $\Im y<-\epsilon$, the sequence of functions $\sum_{j=0}^{\infty} f_{n, M, R, I, J}(j / q) e^{-i y j / q}$ converges uniformly. The limit function is thus holomorphic [Ahl79, Thm 1, Chap 5]. Taking union over all $\epsilon>0$, we see $F_{n, M}(y)$ exists and is holomorphic on Ω.

Remark 4.2. For a big p, p^{-1} family J_{\bullet}, the analogous $F_{n, M, I, J_{\bullet}}(y)$ defined using $f_{n, M, I, J_{\bullet}}$ is entire since the corresponding sum is a finite sum.

Now, we want to check the convergence of $\left(F_{n, M, I, J}(y) / q^{\operatorname{dim}(M)}\right)_{n}$ whenever it exists. We will be repeatedly using the dominated convergence: if a sequence of measurable functions f_{n} converges to f pointwise on a measurable set Σ and there is a measurable function g such that $\left|f_{n}\right| \leq g$ on Σ for any n and $\int_{\Sigma}|g|<\infty$, then $\int_{\Sigma}\left|f_{n}-f\right|$ converges to 0 , so in particular $\int_{\Sigma} f_{n}$ converges to $\int_{\Sigma} f$.

Theorem 4.3. Let (R, \mathfrak{m}, k) be a local ring, I, J be two R-ideal, $I+J$ is \mathfrak{m}-primary, and M be a finitely generated R-module of dimension d.
(1) Assume J is \mathfrak{m}-primary. Then $F_{M, I, J}(y)=\lim _{n \rightarrow \infty} F_{n, M}(y) / p^{n \operatorname{dim} M}$ exists for all $y \in \mathbb{C}$. This convergence is uniform on any compact set of \mathbb{C}. Suppose $h_{M}(s)$ is constant for $s \geq C$, then $F_{M, I, J}(y)=\int_{0}^{C} h_{M}(t) i y e^{-i y t} d t+h_{M}(C) e^{-i y C}$.
(2) Assume J is not necessarily \mathfrak{m}-primary. Then for every $y \in \Omega, F_{n, M}(y) / p^{n} \operatorname{dim} M$ converges to

$$
F_{M, I, J}(y)=\int_{0}^{\infty} h_{M}(t) e^{-i y t} i y d t
$$

Moreover, this convergence is uniform on any compact subset of Ω and $F_{M}(y):=F_{M, I, J}(y)$ is holomorphic on Ω.

Proof.
(1) Since J is \mathfrak{m}-primary, then $h_{M}(s)=h_{M}(C)$ for some fixed $C>0$ and any $s \geq C$; see Lemma 3.8 and Proposition 3.32. Then,

$$
\begin{aligned}
F_{n, M}(y) & =\sum_{j=0}^{\infty} f_{n, M}(j / q) e^{-i y j / q} \\
& =\sum_{j=0}^{\infty}\left(h_{n, M}((j+1) / q)-h_{n, M}(j / q)\right) e^{-i y j / q} \\
& =\sum_{j=0}^{C q-1}\left(h_{n, M}((j+1) / q)-h_{n, M}(j / q)\right) e^{-i y j / q} \\
& =\sum_{j=0}^{C q-1} h_{n, M}(j / q)\left(e^{-i y(j-1) / q}-e^{-i y(j) / q}\right)+h_{n, M}(C) e^{-i y\left(C-\frac{1}{q}\right)} \\
& =\sum_{j=0}^{C q-1} h_{n, M}(j / q) e^{-i y j / q}\left(e^{i y / q}-1\right)+h_{n, M}(C) e^{-i y\left(C-\frac{1}{q}\right)} \\
& =\int_{0}^{C} h_{n, M}(t) e^{-i y[t q] / q} q\left(e^{i y / q}-1\right) d t+h_{n, M}(C) e^{-i y\left(C-\frac{1}{q}\right)} .
\end{aligned}
$$

Fix a compact subset K of \mathbb{C}. Given $\delta>0$, choose $b>0$ such that for all $y \in K, t \in \mathbb{R}$ and $n \in \mathbb{N}$

$$
\int_{0}^{b}\left(\frac{1}{q^{d}}\left|h_{n, M}(t) e^{-i y[t q] / q} q\left(e^{i y / q}-1\right)\right|+\left|h_{M}(t) e^{-i y t}(i y)\right|\right) d t \leq \frac{\delta}{2} .
$$

We have

$$
\begin{gathered}
\left|\frac{1}{q^{d}} F_{n, M}(y)-\int_{0}^{C} h_{M}(t) e^{-i y t}(i y) d t-h_{M}(C) e^{-i y C}\right| \\
\leq \int_{0}^{C}\left|h_{n, M, d}(t) e^{-i y[t q\rceil / q} q\left(e^{i y / q}-1\right)-h(y) i y e^{-i y t}\right| d t+\left|h_{n, M}(C) e^{-i y\left(C-\frac{1}{q}\right)}-h_{M}(C) e^{-i y C}\right| \\
\leq \int_{0}^{b}\left(\left|h_{n, M, d}(t) e^{-i y\lceil t q\rceil / q} q\left(e^{i y / q}-1\right)\right|+\left|h_{M}(t) e^{-i y t}(i y)\right|\right) d t \\
+\int_{b}^{C}\left|h_{n, M, d}(t) e^{-i y[t q\rceil / q} q\left(e^{i y / q}-1\right)-h(y) i y e^{-i y t}\right| d t+\left|h_{n, M}(C) e^{-i y\left(C-\frac{1}{q}\right)}-h_{M}(C) e^{-i y C}\right| .
\end{gathered}
$$

Moreover for $y \in K$, there is a constant C^{\prime} independent of n such that for all $t \in[b, C]$

$$
\left|h_{n, M, d}(\lfloor t q\rfloor / q)-h_{M}(t)\right| \leq C^{\prime} / q \text { and }\left|e^{-i y\lfloor t q\rfloor / q} q\left(e^{i y / q}-1\right)-e^{i y t}(i y)\right| \leq C^{\prime} / q
$$

Thus we can choose N_{0} such that for all $n \geq N_{0}$ and $y \in K$,

$$
\left|\frac{1}{q^{d}} F_{n, M}(y)-\int_{0}^{C} h_{M}(t) e^{-i y t}(i y) d t-h_{M}(C) e^{-i y C}\right| \leq \delta
$$

This proves the desired uniform convergence.
(2)We prove uniform convergence of $F_{n, M} / q^{\operatorname{dim}(M)}$ to the integral on every compact subset of Ω; the holomorphicity of F_{M} is then a consequence of [Ahl79, Thm1, Chap 5]. We have

$$
\begin{aligned}
F_{n, M}(y) & =\sum_{j=0}^{\infty} f_{n, M}(j / q) e^{-i y j / q} \\
& =\sum_{j=0}^{\infty}\left(h_{n, M}((j+1) / q)-h_{n, M}(j / q)\right) e^{-i y j / q} \\
& =\sum_{j=0}^{\infty} h_{n, M}(j / q)\left(e^{-i y(j-1) / q}-e^{-i y(j) / q}\right) \\
& =\sum_{j=0}^{\infty} h_{n, M}(j / q) e^{-i y j / q}\left(e^{i y / q}-1\right) \\
& =\int_{0}^{\infty} h_{n, M}(t) e^{-i y[t q\rceil / q} q\left(e^{i y / q}-1\right) d t
\end{aligned}
$$

The rearrangements leading to the second and third equality are possible thanks to the absolute convergences implied by Theorem 3.16. Fix any compact $K \subseteq \Omega$. Using triangle inequality, we get

$$
\begin{aligned}
& \left|h_{n, d}(t) e^{-i y \frac{\lfloor t q \mid}{q}} q\left(e^{i y / q}-1\right)-h(t) e^{-i y t}(i y)\right| \\
& \leq\left|h_{n, d}(t)-h(t)\right|\left|e^{-i y \frac{\lceil t q\rceil}{q}} q\left(e^{i y / q}-1\right)\right|+|h(t)|\left|e^{-i y \frac{\lceil t q\rceil}{q}}-e^{-i y t}\right|\left|q\left(e^{i y / q}-1\right)\right| \\
& +|h(t)|\left|e^{-i y t}\right|\left|q\left(e^{i y / q}-1\right)-i y\right| \\
& =\left|h_{n, d}(t)-h(t)\right|\left|e^{-i y \frac{[t q]}{q}} q\left(e^{i y / q}-1\right)\right|+\left|h(t) e^{-i y t}\right|\left|e^{-i y\left(\frac{\lceil t q]}{q}-t\right)}-1\right|\left|q\left(e^{i y / q}-1\right)\right| \\
& +\left|h(t) e^{-i y t}\right|\left|q\left(e^{i y / q}-1\right)-i y\right| .
\end{aligned}
$$

It follows from the power series expansion of e^{z} at zero and the boundedness of K that there are constants C_{1}, C_{2} such that for all $y \in K, t \in \mathbb{R}$ and $n \in \mathbb{N}$

$$
\left|q\left(e^{i y / q}-1\right)\right| \leq C_{1}|y|,\left|q\left(e^{i y / q}-1\right)-i y\right| \leq C_{2} \frac{|y|^{2}}{q},\left|e^{-i y\left(\frac{\lceil t q\rceil}{q}-t\right)}-1\right| \leq C_{1}\left|y\left(\frac{\lceil t q\rceil}{q}-t\right)\right| .
$$

Choose $\epsilon>0$ such that $K \subseteq\{y \in \mathbb{C} \mid \Im y<-\epsilon\}$. Using the comparisons above, we get for all $y \in K, t \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
\begin{gathered}
\left|h_{n, d}(t) e^{-i y \frac{\lceil t q\rceil}{q}} q\left(e^{i y / q}-1\right)-h(t) e^{-i y t}(i y)\right| \\
\leq\left|h_{n, d}(t)-h(t)\right| e^{-\epsilon t} C_{1}|y|+\left|h(t) e^{-\epsilon t}\right| C_{1}^{2}|y|^{2}\left|\frac{\lceil t q\rceil}{q}-t\right|+\left|h(t) e^{\epsilon t}\right| C_{2} \frac{|y|^{2}}{q} \\
\leq\left|h_{n, d}(t)-h(t)\right| e^{-\epsilon t} C_{1}|y|+\left|h(t) e^{-\epsilon t}\right| C_{1}^{2} \frac{\left.2 y\right|^{2}}{q}+\left|h(t) e^{-\epsilon t}\right| C_{2} \frac{|y|^{2}}{q} .
\end{gathered}
$$

Taking integral on $\mathbb{R}_{\geq 0}$, we get for $y \in K$ and all $n \in \mathbb{N}$

$$
\begin{gathered}
\left|\frac{1}{q^{d}} F_{n, M}(y)-F_{M, I, J}(y)\right| \\
\leq C_{1}|y| \int_{0}^{\infty}\left|h_{n, d}(t)-h(t)\right| e^{-\epsilon t} d t+\left(C_{1}^{2}+C_{2}\right) \frac{|y|^{2}}{q} \int_{0}^{\infty}|h(t)| e^{-\epsilon t} d t
\end{gathered}
$$

Thanks to Theorem 3.16, (2), we can choose a polynomial $P_{2} \in \mathbb{R}[t]$ such that $\left|h_{n, d}(t)\right| \leq$ $\left|P_{2}(t)\right|$ for all n and $t \in \mathbb{R}$. Since $\left|P_{2}(t) e^{-\epsilon t}\right|$ is integrable on $\mathbb{R}_{\geq 0}$, by dominated convergence

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left|h_{n, d}(t)-h(t)\right| e^{-\epsilon t} d t=0
$$

Using this in the last inequality implies uniform convergence of $\frac{1}{q^{d}} F_{n, M}(y)$ to $F_{M, I, J}(y)$ on K.

Remark 4.4. Suppose $h_{M}(y)$ is constant for $y \geq C$. Since for $y \in \Omega, h_{M}(C) e^{-i y C}$ converges to zero as y approaches infinity, the two descriptions of h_{M} in this case match on Ω. When J_{\bullet} is both big p and p^{-1}, our argument actually produces a corresponding entire function $F_{M, I, J J_{\bullet}}(y)$.

Definition 4.5. Let I, J be two ideals in (R, \mathfrak{m}) such that $I+J$ is \mathfrak{m}-primary. For a finitely generated R-module M, the function $F_{M, I, J}(y)$ is called the Frobenius-Poincaré function of (M, I, J).

We drop one or more parameters from $F_{M, I, J}$ when there is no possible source of confusion.

The next result directly follows from Proposition 3.32.
Corollary 4.6. Let M, N be two R-modules such that their localization are isomorphic at all $P \in \operatorname{Assh} R$. Then $F_{M}(y)=F_{N}(y)$.

Proof. This is true because $h_{M}(s)=h_{N}(s)$.
5. Differentiability of h-Function, density function in the local setting

In this section, we discuss the extension of the theory of Hilbert-Kunz density function in the local setting.

Definition 5.1. Let I be an ideal and J_{\bullet} be a family of ideals in (R, \mathfrak{m}) satisfying Condition C. For a finitely generated R-module M and $s \in \mathbb{R}$, recall

$$
f_{n, M, I, J \bullet \bullet}(s)=h_{n, M, I, J \bullet \bullet}\left(s+\frac{1}{q}\right)-h_{n, M, I, J \bullet}(s)=l\left(\frac{\left(I^{\lceil s q\rceil}+J_{n}\right) M}{\left(I^{\lceil s q]+1}+J_{n}\right) M}\right) .
$$

Whenever $\left(\left(\frac{1}{p^{n}}\right)^{\operatorname{dim}(M)-1} f_{n, M, I, J \cdot}(s)\right)_{n}$ converges, we call the limit the density function of $\left(M, I, J_{\bullet}\right)$ at s and denote the limit by $f_{M, I, J_{\bullet}}(s)$. Whenever $f_{M, I, J_{\bullet}}(s)$ exists for all $s \in \mathbb{R}$, the resulting function $f_{M, I, J_{\mathbf{\bullet}}}$ is called the density function of $\left(M, I, J_{\mathbf{\bullet}}\right)$.

We often drop one or more parameters from $f_{n, M, I, J_{\bullet}}(s), f_{M, I, J_{\bullet}}(s), f_{M, I, J_{\bullet}}$ whenever those are clear from the context.

In Theorem 5.8, we relate the existence of $f_{M, I, J_{\bullet}}(s)$ to the differentiability of $h_{M, I, J_{\bullet}}$ at s-whenever $h_{M, I, J_{\bullet}}$ exists. We show that $h_{M, I, J_{\bullet}}$ is always left and right differentiable everywhere on the real line. The new ingredient is our 'convexity technique'. The h function being Lipschitz continuous is differentiable outside a set of measure zero. But our method shows that the h-function is differentiable outside a countable set. Recall:

Definition 5.2. Let S be a subset of \mathbb{R}. We call a function $\lambda: S \rightarrow \mathbb{R}$ to be convex if for elements of $S, s_{1}<s_{2} \leq t_{1}<t_{2}$,

$$
\frac{\lambda\left(s_{2}\right)-\lambda\left(s_{1}\right)}{s_{2}-s_{1}} \geq \frac{\lambda\left(t_{2}\right)-\lambda\left(t_{1}\right)}{t_{2}-t_{1}} .
$$

Convexity is a notion that appears naturally in mathematical analysis. For references on convex functions, see [NP06].
Let $I, J_{\mathbf{\bullet}}, M$ be as above. Now we lay the groundwork for the construction of the convex function $\mathcal{H}\left(s, s_{0}\right)$ in Theorem 5.3. Fix μ such that I is generated by μ-many elements. Set $M_{q}=M / J_{n} M$ and S to be the polynomial ring in μ many variables over R / \mathfrak{m}. Given a compact interval $[a, b] \subseteq(0, \infty)$, thanks to Theorem 3.19 we can choose C such that for all $x \in[a, b]$ and $n \in \mathbb{N}$

$$
\frac{I^{\lceil x q\rceil} M_{q}}{I^{\lceil x q\rceil+1} M_{q}}=h_{n}\left(x+\frac{1}{q}\right)-h_{n}(x) \leq C q^{\operatorname{dim} M-1} .
$$

Recall,

$$
l\left(S_{\lceil x q\rceil}\right)=\binom{\mu+\lceil x q\rceil-1}{\mu-1}=1 /(\mu-1)!(\lceil x q\rceil)^{\mu-1}+O\left(\lceil x q\rceil^{\mu-2}\right) .
$$

Fix $s_{0} \in \mathbb{R}$. Taking cues from these two estimates, for $s>s_{0}$ we define

$$
\begin{equation*}
\mathcal{H}_{n}\left(s, s_{0}\right)=\sum_{j=\left\lceil s_{0} q\right\rceil}^{\lceil s q\rceil-1} q^{\mu-\operatorname{dim}(M)-1} l\left(I^{j} M_{q} / I^{j+1} M_{q}\right) / l\left(S_{j}\right) . \tag{5.1}
\end{equation*}
$$

Theorem 5.3. Let I, J_{\bullet} in the local ring (R, \mathfrak{m}) satisfy Condition C, M be a finitely generated R-module of Krull dimsnion d, I be generated by a set of μ elements. Set $M_{q}=M / J_{n} M$, fix $s_{0} \in \mathbb{R}_{>0}$. Consider the two situations:
(A) R is a domain and $M=R$.
(B) $J_{n}=J^{[q]}$ for some ideal J such that $I+J$ is \mathfrak{m}-primary and M is any finitely generated R-module.
Set $c(s)=\frac{s^{\mu-1}}{(\mu-1)!}$. In the context of (A) or $(B)^{3}$, set

$$
\mathcal{H}\left(s, s_{0}\right)=h_{M, I, J_{\bullet}}(s) / c(s)-h_{M, I, J \bullet \bullet}\left(s_{0}\right) / c\left(s_{0}\right)+\int_{s_{0}}^{s} h_{M, I, J_{\bullet}}(t) c^{\prime}(t) / c^{2}(t) d t .
$$

(1) On any compact subset of $\left(s_{0}, \infty\right), \mathcal{H}_{n}\left(s, s_{0}\right)$ uniformly converges to $\mathcal{H}\left(s, s_{0}\right)$.
(2) The function $\mathcal{H}\left(s, s_{0}\right)$ is a convex function on $\left(s_{0}, \infty\right)$.

Proof. (1) We have

$$
\begin{aligned}
& \mathcal{H}_{n}\left(s, s_{0}\right)=\sum_{j=\left\lceil s_{o} q\right\rceil}^{\lceil s q\rceil-1} q^{\mu-d-1} l\left(I^{j} M_{q} / I^{j+1} M_{q}\right) / l\left(S_{j}\right) \\
&= \sum_{j=\left\lceil s_{0} q\right\rceil}^{\lceil s q\rceil-1} q^{\mu-d-1}\left(l\left(M_{q} / I^{j+1} M_{q}\right)-l\left(M_{q} / I^{j} M_{q}\right)\right) / l\left(S_{j}\right) \\
&=q^{\mu-d-1} l\left(M_{q} / I^{\lceil s q\rceil} M_{q}\right) / l\left(S_{\lceil s q\rceil-1}\right)-q^{\mu-d-1} l\left(M_{q} / I^{\left\lceil s_{0} q\right\rceil} M_{q}\right) / l\left(S_{\left\lceil s_{0} q\right\rceil}\right) \\
&+ \sum_{j=\left\lceil s_{o} q\right\rceil+1}^{\lceil s q\rceil-1} q^{\mu-d-1} l\left(M_{q} / I^{j} M_{q}\right)\left(1 / l\left(S_{j-1}\right)-1 / l\left(S_{j}\right)\right) .
\end{aligned}
$$

Since we are in the context of (A) or (B), $q^{\mu-d-1} l\left(M_{q} / I^{\lceil s q\rceil} M_{q}\right) / l\left(S_{\lceil s q\rceil-1}\right)$ converges to $h(s) / c(s)$ and $q^{\mu-d-1} l\left(M_{q} / I^{\left|s_{0 q}\right|} M_{q}\right) / l\left(S_{\left\lceil s_{0} q\right\rceil}\right)$ converges to $h\left(s_{0}\right) / c\left(s_{0}\right)$. Also,

[^2]\[

$$
\begin{aligned}
& \sum_{j=\left\lceil s_{o q\rceil}+1\right.}^{\lceil s q\rceil-1} q^{\mu-d-1} l\left(M_{q} / I^{j} M_{q}\right)\left(1 / l\left(S_{j-1}\right)-1 / l\left(S_{j}\right)\right) \\
= & \int_{s_{0}}^{s-1 / q} \frac{l\left(M_{q} / I^{\lceil t q\rceil} M_{q}\right)}{q^{d}}\left(\frac{1}{l\left(S_{\lceil t q\rceil-1}\right)}-\frac{1}{l\left(S_{\lceil t q\rceil}\right)}\right)\left(q^{\mu}\right) d t .
\end{aligned}
$$
\]

When q approaches infinity, $\frac{l\left(M_{q} / I^{[t q]} M_{q}\right)}{q^{d}}$ converges to $h_{M}(t)$, and $\left(\frac{1}{l\left(S_{[t q]-1)}\right)}-\frac{1}{l\left(S_{[t q])}\right)}\right)\left(q^{\mu}\right)$ converges to $c^{\prime}(t) / c^{2}(t)$. Also, all these convergence are uniform on any compact subset of $(0, \infty)$. So we get a uniform convergence (uniform on s) on any compact subset of $\left(s_{0}, \infty\right)$:

$$
\begin{aligned}
& \int_{s_{0}}^{s-1 / q} \frac{l\left(M_{q} / I^{\lfloor t q\rfloor} M_{q}\right)}{q^{d}}\left(\frac{1}{l\left(S_{\lfloor t q\rfloor-1}\right)}-\frac{1}{l\left(S_{\lfloor t q\rfloor}\right)}\right)\left(q^{\mu}\right) d t \\
& \rightarrow \int_{s_{0}}^{s} h(t) c^{\prime}(t) / c^{2}(t) d t
\end{aligned}
$$

This proves that $\mathcal{H}_{n}\left(s, s_{0}\right)$ converges to $\mathcal{H}\left(s, s_{0}\right)$ and the convergence is uniform on any compact subset of $\left(s_{0}, \infty\right)$.
(2) We claim \mathcal{H}_{n} is convex on $1 / p^{n} \mathbb{Z} \cap\left(s_{0}, \infty\right)$. To this end, it suffices to show

$$
\mathcal{H}_{n}\left(\frac{i+1}{p^{n}}, s_{0}\right)-\mathcal{H}_{n}\left(\frac{i}{p^{n}}, s_{0}\right) \geq \mathcal{H}_{n}\left(\frac{i+2}{p^{n}}, s_{0}\right)-\mathcal{H}_{n}\left(\frac{i+1}{p}, s_{0}\right) .
$$

By definition, this is equivalent to showing

$$
l\left(I^{i} M_{q} / I^{i+1} M_{q}\right) / l\left(S_{i}\right) \geq l\left(I^{i+1} M_{q} / I^{i+2} M_{q}\right) / l\left(S_{i+1}\right)
$$

which follows from Lemma 3.17. This convexity of $\mathcal{H}_{n}\left(s, s_{0}\right)$ implies the convexity of the limit function $\mathcal{H}\left(s, s_{0}\right)$ on $\left(s_{0}, \infty\right) \cap \mathbb{Z}[1 / p]$. Therefore for $s_{1}<s_{2} \leq t_{1}<t_{2}$ in $\left(s_{0}, \infty\right) \cap \mathbb{Z}[1 / p]$,

$$
\frac{H\left(s_{2}, s_{0}\right)-H\left(s_{1}, s_{0}\right)}{s_{2}-s_{1}} \geq \frac{H\left(t_{2}, s_{0}\right)-H\left(t_{1}, s_{0}\right)}{t_{2}-t_{1}}
$$

Since $\mathcal{H}\left(s, s_{0}\right)$ is continuous on $\left(s_{0}, \infty\right),(s, t) \rightarrow H\left(t, s_{0}\right)-H\left(s, s_{0}\right) /(t-s)$ is continuous. Moreover as $\mathbb{Z}[1 / p] \cap\left(s_{0}, \infty\right)$ is dense in $\left(s_{0}, \infty\right)$, the slope inequality defining a convex function (see Definition 5.2) holds for $\mathcal{H}\left(s, s_{0}\right)$ for points in $\left(s_{0}, \infty\right)$.

Theorem 5.4. With notations set in the statement of Theorem 5.3, set $\mathcal{H}(s)=\mathcal{H}\left(s, s_{0}\right)$. Denote the left and right derivative of a function λ at $s \in \mathbb{R}$ by $\lambda_{-}^{\prime}(s)$ and $\lambda_{+}^{\prime}(s)$ respectively. In the context of situation (A) or (B) stated in Theorem 5.3,
(1) On the interval $\left(s_{0}, \infty\right)$, the derivative of \mathcal{H} exists except for countably many points. The left and right derivative of \mathcal{H} exists everywhere. The second derivative of \mathcal{H} exists almost everywhere, i.e. outside a set of Lebesgue measure zero.
(2) The left and right derivatives of \mathcal{H} are both decreasing in terms of s. We have $\mathcal{H}_{+}^{\prime}(s) \leq \mathcal{H}_{-}^{\prime}(s)$, and if $s_{1}<s_{2}, \mathcal{H}_{-}^{\prime}\left(s_{2}\right) \leq \mathcal{H}_{+}^{\prime}\left(s_{1}\right)$.
(3) On the interval $(0, \infty)$, the derivative of h exists except for countably many points. The left and right derivative of h exists everywhere. The second derivative of h exists almost everywhere.
(4) On $\left(s_{0}, \infty\right), h_{+}^{\prime}(s)=\mathcal{H}_{+}^{\prime}(s) c(s), h_{-}^{\prime}(s)=\mathcal{H}_{-}^{\prime}(s) c(s)$ exists, and $h_{+}^{\prime}(s) \leq h_{-}^{\prime}(s)$ for any $s \in(0, \infty)$.

Proof. (1) and (2) follows from properties of convex functions and the convexity of \mathcal{H} in Theorem 5.3, (2).
(3), (4): Recall

$$
\mathcal{H}\left(s, s_{0}\right)=h_{M, I, J_{\bullet}}(s) / c(s)-h_{M, I, J_{\bullet}}\left(s_{0}\right) / c\left(s_{0}\right)+\int_{s_{0}}^{s} h_{M, I, J_{\bullet}}(t) c^{\prime}(t) / c^{2}(t) d t
$$

Since in the context of (A) and (B) $h_{M, I, J_{\bullet}}$ is continuous on $(0, \infty)$, the part of $\mathcal{H}\left(s, s_{0}\right)$ given by the integral is always differentiable. So (3) follows from the analogous properties of $\mathcal{H}\left(s, s_{0}\right)$ in (1) by varying s_{0}. The formulas in (4) follow from a direct computation. That $h_{+}^{\prime}(s) \leq h_{-}^{\prime}(s)$ follows from these formulas and (2).

Remark 5.5. Trivedi asks when the Hilbert-Kunz density function of a graded pair (R, J) is $\operatorname{dim}(R)-2$ times continuously differentiable; see [Tri21, Question 1]. In general the Hilbert-Kunz density function need not be $\operatorname{dim}(R)-2$ times continuously differentiable; see [Muk23, Example 8.3.2]. Our work shows that the Hilbert-Kunz density function is always differentiable outside a set of measure zero. Indeed, a convex function on an interval is twice differentiable outside a set of measure zero; see [NP06, Section 1.4]. Thus from Theorem 5.3, it follows that outside a set of measure zero the h function is twice differentiable. Now from Theorem 6.7, we conclude that the Hilbert-Kunz density function of a graded domain of dimension at least two is differentiable outside a set of measure zero.

Remark 5.6. The conclusions of Theorem 5.3 and Theorem 5.4 are deduced in the context of situation (A) or (B), because we prove existence and continuity of $h_{M, I, J_{\bullet}}$ in those two contexts. So even outside the context of (A) or (B) whenever there is an h-function continuous on $(0, \infty)$, we have a corresponding version of Theorem 5.3 and Theorem 5.4.

We return to the question of existence of $f_{M, I, J_{\bullet}}(s)$ at a given $s \in \mathbb{R}$. We make comparisons between the limsup and and liminf of the sequence defining $f_{M, I, J \bullet}(s)$ and the corresponding $h_{+}^{\prime}(s)$ and $h_{-}^{\prime}(s)$.

Lemma 5.7. With the notation set in Theorem 5.3, set

$$
D_{n, t}=f_{n, M, I, J \bullet \bullet}\left(t / p^{n}\right)=h_{n, M, I, J_{\bullet}}\left((t+1) / p^{n}\right)-h_{n, M, I, J}\left(t / p^{n}\right) .
$$

In the context of situation (A) or (B),
(1)

$$
h_{+}^{\prime}(s)=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\sum_{t=\left\lceil s p^{m} p^{n}\right\rceil}^{\left\lceil s p^{m} p^{n}\right\rceil+p^{n}-1} D_{m+n, t}}{p^{m(d-1)} p^{n d}} .
$$

$$
\begin{equation*}
h_{-}^{\prime}(s)=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\sum_{t=\left\lceil s p^{m} p^{n}\right\rceil-p^{n}}^{\left\lceil s p^{m} p^{n}\right\rceil-1} D_{m+n, t}}{p^{m(d-1)} p^{n d}} . \tag{2}
\end{equation*}
$$

Proof. (1) Note

$$
\begin{array}{r}
\quad \sum_{t=\left\lceil s p^{m} p^{n}\right\rceil}^{\left\lceil s p^{m} p^{n}\right\rceil+p^{n}-1} D_{m+n, t} \\
=\sum_{t=\left\lceil s p^{m} p^{n}\right\rceil}^{\left\lceil s p^{m} p^{n}\right\rceil+p^{n}-1} f_{m+n, M}\left(t / p^{m} p^{n}\right) \\
=h_{m+n, M}\left(\left\lceil s p^{m} p^{n}\right\rceil / p^{m} p^{n}+1 / p^{m}\right)-h_{m+n, M}\left(\left\lceil s p^{m} p^{n}\right\rceil / p^{m} p^{n}\right) .
\end{array}
$$

Since in the context of (A) or (B), the h-function exists, the right hand side of the desired equation in (1) is

$$
\begin{array}{r}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{h_{m+n, M}\left(\left\lceil s p^{m} p^{n}\right\rceil / p^{m} p^{n}+\frac{1}{p^{m}}\right)-h_{m+n, M}\left(\left\lceil s p^{m} p^{n}\right\rceil / p^{m} p^{n}\right)}{p^{m(d-1)} p^{n}} \\
=\lim _{m \rightarrow \infty} \frac{h_{M}\left(s+1 / p^{m}\right)-h_{M}(s)}{1 / p^{m}} \\
=h_{+}^{\prime}(s) .
\end{array}
$$

(2) Note

$$
\begin{array}{r}
\sum_{t=\left\lceil s p^{m} p^{n}\right\rceil-p^{n}}^{\left\lceil s p^{m} p^{n}\right\rceil-1} D_{m+n, t} \\
=\sum_{t=\left\lceil s p^{m} p^{n}\right\rceil-p^{n}}^{\left\lceil s p^{m} p^{n}\right\rceil-1} f_{m+n, M}\left(t / p^{m} p^{n}\right) \\
=h_{m+n, M}\left(\left\lceil s p^{m} p^{n}\right\rceil / p^{m} p^{n}\right)-h_{m+n, M}\left(\left\lceil s p^{m} p^{n}\right\rceil / p^{m} p^{n}-1 / p^{m}\right)
\end{array}
$$

Thus the right hand side of the desired equation in (1) is

$$
\begin{array}{r}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{h_{m+n, M}\left(\left\lceil s p^{m} p^{n}\right\rceil / p^{m} p^{n}\right)-h_{m+n, M}\left(\left\lceil s p^{m} p^{n}\right\rceil / p^{m} p^{n}-1 / p^{m}\right)}{p^{m(d-1)} p^{n}} \\
=\lim _{m \rightarrow \infty} \frac{h_{M}(s)-h_{M}\left(s-1 / p^{m}\right)}{1 / p^{m}} \\
=h_{-}^{\prime}(s) .
\end{array}
$$

Theorem 5.8. With the same notation as in Theorem 5.3, in the context of situation (A) or (B),
(1) for any $s>0$,

$$
h_{+}^{\prime}(s) \leq \underline{\lim }_{n \rightarrow \infty} f_{n, M, I, J \cdot}(s) / p^{n(d-1)} \leq \varlimsup_{n \rightarrow \infty} f_{n, M, I, J \bullet \bullet}(s) / p^{n(d-1)} \leq h_{-}^{\prime}(s),
$$

where \varliminf and lim denote liminf and limsup respectively.
(2) At $s>0$, if h_{M} is differentiable, then $f_{M, I, J_{\bullet}}(s)$ - the density function of $\left(M, I, J_{\bullet}\right)$ at s exists and is equal to $h_{M, I, J}^{\prime}(s)$. If $h_{M}(s)$ is a C^{1}-function, then $f_{M}(s)$ is continuous.
(3) There is a countable subset of $(0, \infty)$ outside which $f_{M, I, J}$. (s) exists and is equal to $h_{M, I, J \cdot}^{\prime}(s)$.

Proof. (1) In the proof, we also use the notation set in Lemma 5.7, (1). Set

$$
\alpha_{\mu, t}=\binom{\mu+t-1}{\mu-1} .
$$

Note $D_{n, t}=l\left(\left(I^{t}+J_{n}\right) M /\left(I^{t+1}+J_{n}\right) M\right)$. For a fixed $n, D_{n, t} / \alpha_{\mu, t}$ is a decreasing function of t, thanks to Lemma 3.17. So for $\left\lceil s p^{m} p^{n}\right\rceil \leq t \leq\left\lceil s p^{m} p^{n}\right\rceil+p^{n}-1, D_{m+n, t} / \alpha_{\mu, t} \leq$ $D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil} / \alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}$, so

$$
\begin{aligned}
D_{m+n, t} & \leq D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil} \frac{\alpha_{\mu, t}}{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}} \\
& \leq D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil} \frac{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil+p^{n}}}{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}} .
\end{aligned}
$$

Also $\alpha_{\mu, t}$ is a polynomial of degree $\mu-1$ in t, so

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil+p^{n}}}{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}} & =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\left(\left\lceil s p^{m} p^{n}\right\rceil+p^{n}\right)^{\mu-1}}{\left\lceil s p^{m} p^{n}\right\rceil^{\mu-1}} \\
& =\lim _{m \rightarrow \infty} \frac{\left(s p^{m}+1\right)^{\mu-1}}{\left(s p^{m}\right)^{\mu-1}} \\
& =1
\end{aligned}
$$

So

$$
\begin{aligned}
h_{+}^{\prime}(s) & =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\sum_{t=\left\lceil s p^{m} p^{n}\right\rceil}^{\left\lceil s p^{m} p^{n}\right\rceil+p^{n}-1} D_{m+n, t}}{p^{m(d-1)} p^{n d}} \\
& \leq \varliminf_{m \rightarrow \infty} \underline{\lim }_{n \rightarrow \infty} \frac{p^{n} D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil}}{p^{m(d-1)} p^{n d}} \frac{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil+p^{n}}}{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}} \\
& =\underline{\lim }_{m \rightarrow \infty} \underline{\lim }_{n \rightarrow \infty} \frac{p^{n} D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil}^{p^{m(d-1)} p^{n d}}}{} \\
& =\varliminf_{m \rightarrow \infty} \underline{\lim }_{n \rightarrow \infty} \frac{D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil}^{p^{m(d-1)} p^{n(d-1)}}}{} .
\end{aligned}
$$

For a sequence of real numbers β_{n} and any $m,{\underline{\lim _{n \rightarrow \infty}}}_{D_{m+n}}=\underline{\lim }_{n \rightarrow \infty} \beta_{n}$ is independent of m, so $\underline{\lim }_{m \rightarrow \infty} \underline{\lim }_{n \rightarrow \infty} \frac{D_{m+n,\left\lceil s p^{m} p^{n}\right]}}{p^{m(d-1)} p^{n(d-1)}}=\underline{\lim }_{n \rightarrow \infty} \frac{{\overline{D_{n, ~}^{n s p}} n \rightarrow \infty}_{p^{n(d-1)}}^{n}}{}$. Therefore we have

$$
h_{+}^{\prime}(s) \leq \underline{\lim }_{n \rightarrow \infty} \frac{D_{n,\left\lceil s p^{n}\right\rceil}^{p^{n(d-1)}}}{\lim _{n \rightarrow \infty}} \frac{f_{n}(s)}{p^{n(d-1)}} .
$$

The proof of the last inequality is similar. First we have If $\left\lceil s p^{m} p^{n}\right\rceil-p^{n} \leq t \leq\left\lceil s p^{m} p^{n}\right\rceil-1$, then $D_{m+n, t} / \alpha_{\mu, t} \geq D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil} / \alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}$, so

$$
\begin{aligned}
D_{m+n, t} & \geq D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil} \frac{\alpha_{\mu, t}}{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}} \\
& \geq D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil} \frac{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil-p^{n}}}{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}} .
\end{aligned}
$$

Also $\alpha_{\mu, t}$ is a polynomial of degree $\mu-1$ in t, so

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil-p^{n}}}{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}} & =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\left(\left\lceil s p^{m} p^{n}\right\rceil-p^{n}\right)^{\mu-1}}{\left.\left\lceil s p^{m} p^{n}\right\rceil\right\rceil^{\mu-1}} \\
& =\lim _{m \rightarrow \infty} \frac{\left(s p^{m}+1\right)^{\mu-1}}{\left(s p^{m}\right)^{\mu-1}} \\
& =1 .
\end{aligned}
$$

So

$$
\begin{aligned}
h_{-}^{\prime}(s) & =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\sum_{t=\left\lceil s p^{m} p^{n}\right\rceil-p^{n}}^{\left\lceil s s p^{m} p^{n}\right\rceil-1} D_{m+n, t}}{p^{m(d-1)} p^{n d}} \\
& \geq \varlimsup_{m \rightarrow \infty} \varlimsup_{n \rightarrow \infty} \frac{p^{n} D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil}}{p^{m(d-1)} p^{n d}} \frac{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil-p^{n}}}{\alpha_{\mu,\left\lceil s p^{m} p^{n}\right\rceil}} \\
& =\varlimsup_{m \rightarrow \infty} \overline{\lim }_{n \rightarrow \infty} \frac{p^{n} D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil}}{p^{m(d-1)} p^{n d}} \\
& =\varlimsup_{m \rightarrow \infty} \varlimsup_{n \rightarrow \infty} \frac{D_{m+n,\left\lceil s p^{m} p^{n}\right\rceil}^{p^{m(d-1)} p^{n(d-1)}} .}{} .
\end{aligned}
$$

For a sequence of real numbers β_{n} and any $m, \varlimsup_{n \rightarrow \infty} \beta_{m+n}=\varlimsup_{n \rightarrow \infty} \beta_{n}$ is independent of m, so $\varlimsup_{m \rightarrow \infty} \varlimsup_{n \rightarrow \infty} \frac{D_{\left.m+n, \int s p^{m} p^{n}\right]}}{p^{m(d-1)} p^{n}(d-1)}=\varlimsup_{n \rightarrow \infty} \frac{D_{n,\left\lceil s p^{n} n\right.}}{p^{n(d-1)}}$. Therefore we have

$$
h_{-}^{\prime}(s) \geq \varlimsup_{n \rightarrow \infty} \frac{D_{n,\left\lceil s p^{n}\right\rceil}}{p^{n(d-1)}}=\varlimsup_{n \rightarrow \infty} \frac{f_{n}(s)}{p^{n(d-1)}} .
$$

(2) If h_{M} is differentiable at $s, h_{+}^{\prime}(s)=h_{-}^{\prime}(s)$. Thus (1) implies that $f_{n, M}(s) / q^{d-1}$ exists and is equal to $h^{\prime}(s)$, rest of (2) is clear.
(3) folows from Theorem 5.4, (3).

Remark 5.9. We prove Theorem 5.8 in the context of situation (A) or (B) defined in Theorem 5.3- which is precisely the contexts where we prove existence of $h_{M, I, J_{\bullet}}$ in this article. Thus when (R, \mathfrak{m}) is a domain, I, J_{\bullet} satisfy Condition C, we get a corresponding density function which is well-defined outside a countable subset of $(0, \infty)$. One particular special case, potentially important for its application to prime characteristic singularity theory, is when J_{\bullet} is the ideal sequence that defines the F-signature of (R, \mathfrak{m}); see Example 3.10.

When $J_{n}=J^{[q]}$, Theorem 5.8 yields a Hilbert-Kunz density function of (I, J) well defined outside a countable subset of $(0, \infty)$.

The function $h_{M, I, J_{\bullet}}$ need not be continuous or differentiable at zero. In Theorem 8.11, we prove that $h_{R, I, J}$ is continuous at zero if and only if $\operatorname{dim} R-\operatorname{dim} R / I \geq 1$ and differentiable at zero if and only if $\operatorname{dim} R-\operatorname{dim} R / I \geq 2$.

Example 5.10. We point out that the h-function need not be differentiable on $(0, \infty)$. Our example of a non differentiable h-function comes from [BST13]. Fix a regular local domain (R, \mathfrak{m}) of dimension d and a non-zero $f \in R$. For $t \in \mathbb{R}$, [BST13] considers the function $t \rightarrow s\left(R, f^{t}\right)$: the F-signature of the pair $\left(R, f^{t}\right)$ which is shown to be the same as

$$
s\left(R, f^{t}\right)=\lim _{n \rightarrow \infty} \frac{1}{q^{d}} l\left(\frac{R}{\mathfrak{m}^{\left[p^{n}\right]}: f^{\left[t p^{n}\right]}}\right) .
$$

With $I=(f), h_{R, I, \mathfrak{m}}(t)=1-s\left(R, f^{t}\right)$; see [BST13, section 4]. At $t=1$, the left hand derivative of h_{I} is the F-signature of R / f; see [BST13, Thm 4.6], while the right hand
derivative is zero since $h(s)=1$ for $s \geq 1$. So h is not differentiable at one if and only if the F-signature of R / f is non-zero, precisely when R / f is strongly F-regular. A concrete example comes from the strongly F-regular ring, $\mathbb{F}_{p}[[x, y, z]] /\left(x^{2}+y^{2}+z^{2}\right)$ with $p \geq 3$.

Example 5.11. We point out that the limit defining the density function at a particular $s \in \mathbb{R}$, i.e. of $f_{n, M, I, J}(s) / q^{\operatorname{dim}(M)-1}$ may not converge. For example, when $I=0, M=R$, then $f_{n, M, I, J}(0)=l\left(R / J^{[q]}\right)$; thus $f_{n, M, I, J} / q^{\operatorname{dim} R}=e_{H K}(J, R)$ is a nonzero real number, so $f_{n, M, I, J} / q^{\operatorname{dim} R-1}$ goes to infinity. This example implies that some assumption is necessary to guarantee the existence of the density function at every point.

Example 5.12. In the definition of the density function if we replace $\lceil s q\rceil$ by $\lfloor s q\rfloor$, then we have more examples where the density function does not exist. We recall Otha's example mentioned in $[\operatorname{Kos} 17$, sec 3$]$ which produces such instances. Let R be the power series ring $k\left[\left[x_{1}, \ldots, x_{d+1}\right]\right], \alpha_{1} \leq \ldots \leq \alpha_{d+1}$ be a sequence of positive integers, $I=\left(x_{1}^{\alpha_{1}} \ldots x_{d+1}^{\alpha_{d+1}}\right)$ be a monomial principal ideal, $J=\left(x_{1}, \ldots, x_{d+1}\right)$ be the maximal ideal of R. Assume moreover that $\alpha_{d}<\alpha_{d+1}, \alpha_{d+1}$ does not divide p, and ϵ_{n} is the residue of p^{n} modulo α_{d+1}. Let \tilde{f} be the density function defined using $\lfloor s q\rfloor$, then $\lim _{n \rightarrow \infty} \tilde{f}_{n, R, I, J} /\left(p^{n d} \epsilon_{n}\right)$ exists and is nonzero, so $\lim _{n \rightarrow \infty} \tilde{f}_{n, R, I, J} / p^{n d}$ exists if and only if ϵ_{n} is a constant sequence, and this is false in general. In general, ϵ_{n} is a periodic function and its period is the order of $p+\alpha_{n+1} \mathbb{Z}$ in the multiplicative group $\left(\mathbb{Z} / \alpha_{n+1} \mathbb{Z}\right)^{*}$.

Example 5.13. We give an example, where the density function exists everywhere although the h-function is not differentiable everywhere. Note that the resulting density function is not continuous in this case; compare with Theorem 6.4. Let $M=R=k[[x]]$ be the power seires ring, $I=J=(x)$. Then $h_{n}(s)=l\left(R / I^{[s q]}+J^{[q]}\right)=\min \{\lceil s q\rceil, q\}$. By simple calculation we get $f_{n}(s)=1$ when $-1 / q<s \leq 1-1 / q$ and is 0 otherwise. So $f(s)=1$ when $0 \leq s<1$ and $f(s)=0$ otherwise.

Here f_{n} converges pointwise but not uniformly. Outside an arbitrary neighborhood of 0 and 1 then f_{n} converges uniformly.

On the other hand, $h(s)$ is 0 when $s \leq 0$, s when $0 \leq s \leq 1,1$ when $s \geq 1$, and is continuous. We have $f(s)=h^{\prime}(s)$ when $s \neq 0,1$; when $s=0,1 h^{\prime}(s)$ does not exist and $f(s)=h_{+}^{\prime}(s)$. This leads us to guessing that whenever the density function exists at s, it coincides with the right hand derivative $h_{+}^{\prime}(s)$.

Remark 5.14. Assume J_{\bullet} is big and $h_{M, I, J_{\bullet}}$ is differentiable everywhere. Since $h_{M, I, J_{\bullet}}$ is eventually constant (Lemma 3.8), the resulting density function $f_{M, I, J_{\bullet}}=h_{M, I, J_{\bullet}}^{\prime}$ is supported on some compact interval $[0, b]$. So the density function has to increase and decrease on $[0, b]$. By Theorem 5.4, $f_{M, I, J \bullet}=h^{\prime}(s)=\mathcal{H}^{\prime}(s) s^{\mu-1} /(\mu-1)$!, where \mathcal{H}^{\prime} is decreasing since \mathcal{H} is convex; so this gives a natural way to represent $f_{M, I, J \bullet}$ as a product of a decreasing and an explicit increasing function, namely $c(s)$. This may help analyzing the monotonicity of the density function.

6. Relation among h, density, Frobenius-Poincaré functions

In Section 4 we developed a notion of Frobenius-Poincaré function in the local setting. Work of Section 5 gives a notion of Hilbert-Kunz density function in the local setting, at least outside a countable subset of $(0, \infty)$. When (R, \mathfrak{m}) is graded, we compare these local notions defined using the \mathfrak{m}-adic filtration with the classical notion of FrobeniusPoincaré function and Hilbert-Kunz density function defined (see Section 2) using the graded structure of the underlying objects.

Lemma 6.1. Let (R, \mathfrak{m}) be a standard graded ring, M be a finitely generated \mathbb{Z}-graded module of dimension d, J be a homogeneous ideal of finite colength. Set

$$
g_{n, M, J, d-1}(s)=\frac{1}{q^{d-1}} l\left(\frac{M}{J}\right)_{\lceil q q]} M, g_{n, M, J}(s)=l\left(\frac{M}{J[q] M}\right)_{\lceil s q\rceil} .
$$

(1) When M is generated in degree zero, for any graded submodule $N \subseteq M(M / N)_{j}=$ $\mathfrak{m}^{j}(M / N) / \mathfrak{m}^{j+1}(M / N)$.
(2) When M is generated in degree zero, $g_{n, M, J}(s)=l\left(\frac{M}{J|q| M}\right)_{\lceil s q\rceil}=f_{n, M, \mathfrak{m}, J}(s)$.

Proof. Let N be any submodule of M, then M / N is also generated in degree 0 , so $(M / N)_{\geq j}=\mathfrak{m}^{j}(M / N)$ and $(M / N)_{j}=\mathfrak{m}^{j}(M / N) / \mathfrak{m}^{j+1}(M / N)$ for any j. This implies $g_{n, M, J}(s)=f_{n, M, \mathfrak{m}, J}(s)$.

Lemma 6.2. We define an equivalence relation \sim on graded modules over a standard graded ring R of positive dimension over a field: we say $M \sim N$ when there is a homogeneous map $\phi: M \rightarrow N$ such that $\operatorname{dim} \operatorname{Ker} \phi, \operatorname{dim} \operatorname{Coker} \phi \leq \operatorname{dim} R-1$, and let \sim also denote the minimal equivalence relation generated by such relations. Then M is equivalent to some module generated in degree 0 .

Proof. We can choose an element $c \in R_{1}$ such that $\operatorname{dim} R / c R \leq \operatorname{dim} R$. First, we find a sufficient large $n>0$ such that M is generated in degree at most n. Then we truncate at degree n to get $M_{\geq n}:=\oplus_{j=n}^{\infty} M_{j}$, which is generated in degree n. The module $M / M_{\geq n}$ is Artinian. The inclusion $M_{\geq n} \hookrightarrow M$ shows $M_{\geq n} \sim M$. The map $M_{\geq n} \rightarrow M_{\geq n}[n]$ given by multiplication by c^{n} has its kernel and cokernel annihilated by c^{n}. So the kernel and cokernel have dimension less than $\operatorname{dim} R$. Thus $M \sim M_{\geq n} \sim M_{\geq n}[n]$. Since $M_{\geq n}[n]$ is generated in degree zero, we are done.

The next result follows directly from the lemma above and Proposition 3.32.
Lemma 6.3. Let (R, \mathfrak{m}) be standard graded, M be a finitely generated \mathbb{Z}-graded R-module, I, J. be homogeneous; assume that the corresponding objects obtained by localizing at \mathfrak{m} satisfy condition (A) or (B) stated in Theorem 5.3. Then there is a finitely generated \mathbb{N}-graded R-module M^{\prime} generated in degree zero such that, $h_{M, I, J_{\bullet}}=h_{M^{\prime}, I, J_{\bullet}}$.

In the context of (A) or (B) stated in Theorem 5.3 there is an h-function and an associated density function defined outside a countable subset of $(0, \infty)$. Although the limit defining the density function may not exist at every point of $(0, \infty)$, we can define the integral of f on any bounded measurable subset Σ of $[0, \infty)$ by integrating the class in $L^{1}(\Sigma)$ represented by the density function. Fix the maximal subset Λ of $[0, \infty)$ where the density function $f_{M, I, J_{\bullet}}$ exists. The continuity of f_{M} at $s \in \Lambda$ refers to the notion of continuity coming from the subspace topology on the domain Λ inherited from \mathbb{R}. With this understanding, we have the following theorem.

Theorem 6.4. Let $(R, \mathfrak{m}), I, J_{\bullet}, M$ be as in Theorem 5.3. Then in the context of situation (A) or (B) as stated in Theorem 5.3, we have for any $s>0$,

$$
h_{M, I, J_{\bullet}}(s)-\lim _{s_{0} \rightarrow 0^{+}} h_{M, I, J_{\bullet}}\left(s_{0}\right)=\int_{0}^{s} f_{M, I, J_{\bullet}}(t) d t .
$$

Moreover if the density $f_{M, I, J_{\bullet}}$. exists and is continuous at $s>0$, then $h_{M, I, J_{\bullet}}$ is differentiable at s and $f_{M}(s)=h_{M}^{\prime}(s)$.

Proof. Given $s>0$, choose $[a, b] \subseteq \mathbb{R}_{>0}$ containing s. For a fixed s_{0} in $[a, b]$ and $s>s_{0}$, we have

$$
h_{n}(s)-h_{n}\left(s_{0}\right)=\sum_{j=\left\lceil s_{0} q\right\rceil}^{\lceil s q\rceil-1} f_{n}\left(\frac{j}{q}\right) .
$$

Thus

$$
\frac{1}{q^{d}} h_{n}(s)-\frac{1}{q^{d}} h_{n}\left(s_{0}\right)=\int_{s_{0}-\frac{1}{q}}^{s-\frac{1}{q}} \frac{f_{n}(t)}{q^{d-1}} d t
$$

By Theorem 3.19, we can choose a constant C such that for any $n \in \mathbb{N}$ and $t \in[a, b]$.

$$
\frac{1}{q^{d-1}} f_{n}(t) \leq C
$$

Thus taking limit as n approaches infinity and using dominated convergence, we get

$$
h_{M, I, J}(s)-h_{M, I, J_{\bullet}}\left(s_{0}\right)=\int_{s_{0}}^{s} f_{M, I, J \bullet}(t) d t .
$$

Taking limit as $s_{0} \rightarrow 0+$ we get the conclusion involving integrals. Note that $\lim _{s_{0} \rightarrow 0+}$ exists as h is increasing.

Whenever $f_{M}(t)$ exists at s and is continuous at s, the differentiability of h_{M} at s and that $h_{M}^{\prime}(s)=f_{M}(s)$ follows from the second fundamental theorem of Calculus.
Proposition 6.5. Continue with the same notation as in Lemma 6.1 but M not necessarily generated in degree zero. Set

$$
\tilde{g}_{n, M, J, d-1}(s)=l\left(M / J^{[q]} M\right)_{\lfloor s q\rfloor} / q^{d-1} .
$$

If additionally $d=\operatorname{dim}(M) \geq 2$, the two limits below exist for all $s \in \mathbb{R}$:

$$
\tilde{g}_{M, J}(s)=\lim _{n \rightarrow \infty} \tilde{g}_{n, M, J, d-1}(s), g_{M, J}(s)=\lim _{n \rightarrow \infty} g_{n, M, J, d-1}(s) .
$$

Moreover $\tilde{g}_{M, J}(s)=g_{M, J}(s)$.
Proof. By [Tri18], $\tilde{g}_{n, M, J, d-1}(s)$ converges for all $s \in \mathbb{R}$. For $s \in \mathbb{Z}[1 / p], g_{n, M, J, d-1}(s)=$ $\tilde{g}_{n, M, J, d-1}(s)$ for q large; so we conclude convergence of $g_{n, M, J, d-1}(s)$. When s is not in $\mathbb{Z}[1 / p]$,

$$
g_{n, M, J, d-1}(s)=\tilde{g}_{n, M, J, d-1}\left(s+\frac{1}{q}\right) .
$$

Now for $d \geq 2$, the uniform convergence of the sequence of functions $\tilde{g}_{n, M, J, d-1}$ and continuity of $\tilde{g}_{M, J}$ imply that the sequence $\tilde{g}_{n, M, J, d-1}\left(s+\frac{1}{q}\right)$ converges to $\tilde{g}_{M, J}(s)$.
Theorem 6.6. Let (R, \mathfrak{m}) be standard graded, J be a homogeneous \mathfrak{m}-primary ideal, M an R-module of dimension $d \geq 2$. Then
(1) $h_{M, \mathfrak{m}, J}$ is differentiable on \mathbb{R}. The density function $f_{M, \mathfrak{m}, J}(s)$ exists everywhere on \mathbb{R} and is the same as $h_{M, \mathfrak{m}, J}^{\prime}(s)$.
(2) Moreover $f_{M, \mathfrak{m}, J}$ is the same as Trivedi's Hilbert-Kunz density function $\tilde{g}_{M, J}(s)$; see Section 2.

Proof. (1) It follows from [Tay18, Lemma 3.3], that for $s \leq 1, h_{M}(s)=e(\mathfrak{m}, M) s^{d} / d$!. So h_{M} is differentiable at zero and the derivative is zero. A direct computation shows that the density function at zero exists and is zero. So we can restrict to $(0, \infty)$. Thanks to Theorem 5.8, (2), it is enough to show that h_{M} is differentiable on $(0, \infty)$. By using Lemma 6.3, we can assume that M is generated in degree zero. Thus by Lemma 6.1

$$
\left.f_{n, M, \mathfrak{m}, J}(s)=g_{n, M, J}(s):=l\left(\left[\frac{M}{J\left[p^{n}\right]}\right]\right]_{\Gamma s q\rceil}\right) \text { for all } s \in \mathbb{R} .
$$

As $d \geq 2$, by Proposition 6.5, $g_{n, M, J}(s) / q^{d-1}$ converges to Trivedi's density function $\tilde{g}_{M, J}(s)$ for all s. Since $\tilde{g}_{M, J}(s)$ is continuous, $f_{M,, J}(s)$ is also continuous. Now by Theorem 6.4, (2), $h_{M, I, J}$ is differentiable on $(0, \infty)$.
(2) Fix an M^{\prime} which is generated in degree zero and equivalent to M in the sense of Lemma 6.2. Thanks to Lemma 6.3 and part (1)

$$
h_{M}=h_{M^{\prime}}, f_{M}=f_{M^{\prime}}
$$

The associativity formula for Trivedi's density function implies (see [Tri18, Prop 2.14]), $\tilde{g}_{M, J}=\tilde{g}_{M^{\prime}, J}$. Since M^{\prime} is generated in degree zero and has dimension at least two, by Lemma 6.1 and Proposition 6.5, $\tilde{g}_{M^{\prime}, J}=f_{M^{\prime}, \mathfrak{m}, J}$. Putting together we conclude that $f_{M, \mathfrak{m}, J}=\tilde{g}_{M, J}$.
We further strengthen the above theorem by proving it for any homogeneous J which not necessarily has finite colength,
Theorem 6.7. Let (R, \mathfrak{m}) be a standard graded, J be a homogeneous ideal, $s \in \mathbb{R}, M$ be a finitely generated graded module of dimension d. Assume $d \geq 2$. Set $\tilde{g}_{n, M, J, d-1}(s)=$ $l\left(M / J^{[q]} M\right)_{\lfloor s q\rfloor} / q^{d-1}$. Then:
(1) The sequence $\left(\tilde{g}_{n, M, J, d-1}(s)\right)_{n}$ converges uniformly on every compact subset of \mathbb{R}. The limiting function is continuous.
(2) $h_{M, \mathfrak{m}, J}$ is differentiable and

$$
h_{M, \mathfrak{m}, J}^{\prime}(s)=f_{M, \mathfrak{m}, J}(s)=\lim _{n \rightarrow \infty} \tilde{g}_{n, M, J, d-1}(s)
$$

Proof. (1) For a positive integer N, set $J^{\prime}=J+\mathfrak{m}^{N+1}$. Then on $[0, N], \tilde{g}_{n, M, J, d-1}=$ $\tilde{g}_{n, M, J^{\prime}, d-1}$. Since J^{\prime} is \mathfrak{m}-primary, by [Tri18], $\tilde{g}_{n, M, J^{\prime}, d-1}$ converges uniformly to a continuous function. Thus on $[0, N], \tilde{g}_{n, M, J, d-1}$ converges uniformly to a continuous function.
(2) Fix a compact interval $[a, b] \subseteq \mathbb{R}$. By Theorem 3.13, (1), we can choose t_{0} such that for all $t \geq t_{0}, h_{M, \mathfrak{m}, J}=h_{M, \mathfrak{m}, J+\mathfrak{m}^{t}}$ on $[a, b]$. Using the ideas from the argument in part(1), fix an integer $t \geq t_{0}$, ensure $\tilde{g}_{n, M, J, d-1}=\tilde{g}_{n, M, J+\mathfrak{m}^{t}, d-1}$ on $[a, b]$ for all n. By Theorem 6.6, $h_{M, \mathfrak{m}, J+\mathfrak{m}^{t}}$ is differentiable on \mathbb{R} with derivative $\tilde{g}_{M, J+\mathfrak{m}^{t} t}$. Thus on (a, b), $h_{M, \mathfrak{m}, J}$ is differentiable with derivative being the continuous function $\tilde{g}_{M, J}$. Since by Theorem $5.8 h_{M}^{\prime}=f_{M}$ on (a, b), we are done.

We point out below that in the graded context the Frobenius-Poincaré function defined using the underlying grading and the maximal ideal adic filtration coincide.. Recall that by Ω, we denote the open lower half complex plane. Let (R, \mathfrak{m}) be standard graded, M is an \mathbb{N}-graded R-module, J be a homogeneous ideal. For $y \in \Omega$,
Proposition 6.8. Let (R, \mathfrak{m}) be standard graded, M an \mathbb{N}-graded R-module of dimension d, J be a homogeneous ideal. Consider the sequence of functions on the open lower half plane

$$
G_{n, M, J}(y)=\sum_{j=0}^{\infty} l\left(\left[\frac{M}{J[q]}\right]_{j}\right) e^{-i y j / q}
$$

(1) $\frac{1}{q^{a}} G_{n, M, J}(y)$ defines a holomorphic function on Ω for every n.
(2) Recall that $F_{M, \mathfrak{m}, J}$ denotes the Frobenius-Poincaré function defined in Definition 4.5. The sequence

$$
\lim _{n \rightarrow \infty} \frac{1}{q^{d}} G_{n, M, J}(y)
$$

converges to $F_{M, \mathfrak{m}, J}(y)$.
(3) When J is \mathfrak{m}-primary, $G_{n, M, J}(y) / q^{d}$ converges to $F_{M, \mathfrak{m}, J}(y)$ on \mathbb{C}.

Proof. Fix an \mathbb{N}-graded module M^{\prime} generated in degree zero and equivalent to M in the sense of Lemma 6.2.
(3) Since J is \mathfrak{m}-primary, G_{n} is a sum of finitely many entire functions. So G_{n} is entire. Fix a compact subset K of \mathbb{C}. By [Muk23, Lemma 3.2.5], we can find a constant D such that

$$
\left|\frac{1}{q^{d}} G_{n, M, J}(y)-\frac{1}{q^{d}} G_{n, M^{\prime}, J}(y)\right| \leq \frac{D}{q} \text { for all } n \text { and } y \in K .
$$

Since M^{\prime} is generated in degree zero, $F_{n, M^{\prime}, \mathbf{m}, J}=G_{n, M^{\prime}, J}$. Since $F_{n, M^{\prime}, \mathfrak{m}, J} / q^{d}$ uniformly converges to $F_{M^{\prime}, \mathbf{m}, J}$ on K, the last inequality implies that $\frac{1}{q^{d}} G_{n, M, J}$ converges uniformly to $F_{M^{\prime}, \mathfrak{m}, J}$ on K; see Theorem 4.3. Thanks to Lemma 6.3 and Theorem 4.3, $F_{M^{\prime}, \mathfrak{m}, J}=F_{M, \mathfrak{m}, J}$ on \mathbb{C}.
(1) There is a polynomial P of degree d with non-negative coefficients such that

$$
l\left(\left[\frac{M}{J[q]}\right]_{j}\right) \leq l\left(M_{j}\right) \leq P(j)
$$

Fix a compact subset $K \subseteq \Omega$. Choose $\epsilon>0$ such that $\Im y<-\epsilon$ for every $y \in K$. Since

$$
\sum_{j=0}^{\infty} \frac{1}{q^{d}}|P(j)| e^{-j \epsilon / q}
$$

is convergent, we conclude that the sequence of holomorphic functions

$$
\left(\frac{1}{q^{d}} \sum_{j=0}^{N} l\left(\left[\frac{M}{J[q]}\right]_{j}\right) e^{-i y j / q}\right)_{N}
$$

converges uniformly to $\frac{1}{q^{a}} G_{n, M, J}(y)$ on K. This proves the holomorphicity of $\frac{1}{q^{a}} G_{n, M, J}$ on Ω.
(2) When $d=0$, the conclusion follows from a direct computation. Assume $d \geq 1$. Since

$$
l\left(\left[\frac{M}{J[q]}\right]_{j}\right)=l\left(\left[\frac{M}{J[q]} M\right]_{\leq j}\right)-l\left(\left[\frac{M}{J}\right]_{\leq j-1}\right),
$$

a direct computation using the equation above shows that,

$$
\begin{equation*}
\sum_{j=0}^{\infty} l\left(\left[\frac{M}{J[q]}\right]_{j}\right) e^{-i y j / p^{n}}=\sum_{j=0}^{\infty} l\left(\left[\frac{M}{J[q]}\right]_{\leq j}\right) e^{-i y j / p^{n}}\left(1-e^{-i y / p^{n}}\right) \tag{6.1}
\end{equation*}
$$

Since

$$
l\left(\frac{\left(\mathfrak{m}^{j}+J^{[q]}\right) M}{\left(\mathfrak{m}^{j+1}+J^{[q]}\right) M}\right)=l\left(\left[\frac{M}{\left(\mathfrak{m}^{j+1}+J[q]\right) M}\right]\right)-l\left(\left[\frac{M}{\left(\mathfrak{m}^{j}+J[q]\right) M}\right]\right),
$$

a direct computation shows that,

$$
\begin{equation*}
\sum_{j=0}^{\infty} l\left(\frac{\left(\mathfrak{m}^{j}+J^{[q]}\right) M}{\left(\mathfrak{m}^{j+1}+J^{[q]}\right) M}\right) e^{-i y j / p^{n}}=\sum_{j=0}^{\infty} l\left(\frac{M}{\left(\mathfrak{m}^{j+1}+J^{[q]}\right) M}\right) e^{-i y j / p^{n}}\left(1-e^{-i y / p^{n}}\right) \tag{6.2}
\end{equation*}
$$

Choose a such that as an R-module M is generated by homogeneous elements of degree at most a. Therefore

$$
\mathfrak{m}^{j} M \subseteq M_{\geq j} \subseteq \mathfrak{m}^{j-a} M
$$

So,

$$
\begin{aligned}
l\left(\frac{M}{\left(\mathfrak{m}^{j+1}+J^{[q]}\right) M}\right)-l\left(\left[\frac{M}{J^{[q]} M}\right]_{\leq j}\right) & =l\left(\frac{M_{\geq j+1}+J^{[q]} M}{\mathfrak{m}^{j+1} M+J^{[q]} M}\right) \\
& \leq l\left(\frac{\mathfrak{m}^{j+1-a} M+J^{[q]} M}{\mathfrak{m}^{j+1} M+J^{[q]} M}\right) \\
& \leq l\left(\frac{\mathfrak{m}^{j+1-a} M}{\mathfrak{m}^{j+1} M}\right) \\
& \leq C j^{d-1},
\end{aligned}
$$

for some C, which is independent of q and j. Using Equation (6.1), Equation (6.2) and the comparison above, we get that for any $y \in \Omega$,

$$
\begin{aligned}
\left|\frac{1}{q^{d}} G_{n, M, J}(y)-\frac{1}{q^{d}} F_{n, \mathbf{m}, J}(y)\right| & \leq \sum_{j=0}^{\infty} C \frac{1}{q}\left(\frac{j}{q}\right)^{d-1} e^{-\Im y j / q}\left|1-e^{-i y / q}\right| \\
& =C\left|1-e^{-i y / q}\right| \int_{0}^{\infty}\lfloor s\rfloor^{d-1} e^{-\Im y\lfloor s\rfloor} d s \\
& \leq C\left|1-e^{-i y / q}\right| \int_{0}^{\infty} s^{d-1} e^{-\Im y(s-1)} d s .
\end{aligned}
$$

Since $\Im y<0$ for $y \in \Omega$, the last integral is convergent. It follows from the last chain of inequalities that on a compact subset of Ω,

$$
\left|\frac{1}{q^{d}} G_{n, M, J}(y)-\frac{1}{q^{d}} F_{n, \mathbf{m}, J}(y)\right|
$$

uniformly converges to zero. This finishes the proof of (2).

7. Arithmetic properties

In this section, we record some arithmetic properties of the function we have constructed in the previous sections.
7.1. \mathfrak{m}-adic continuity. We have proven that the h-function is continuous with respect to the \mathfrak{m}-adic topology on the set of ideals in R.

Theorem 7.1. Let $t \in \mathbb{N}, I_{t}, J_{t}$ be two sequences of ideals such that $I_{t}+J_{t} \subset \mathfrak{m}^{t}$. Then for any $s, \lim _{t \rightarrow \infty} h_{M, I+I_{t}, J+J_{t}}(s)=h_{M, I, J}(s)$. This convergence is uniform with respect to s on any compact set in $(0, \infty)$.

Proof. If $s \neq 0$ then both sides are 0 , so there is nothing to prove. Fix $0<s_{1}<s_{2}<\infty$ and it suffices to prove the uniform convergence on $\left[s_{1}, s_{2}\right]$, this is true by Theorem 3.13 and Theorem 3.20.

The Frobenius-Poincaré function also satisfies a similar property:
Proposition 7.2. Let $t \in \mathbb{N}, I_{t}, J_{t}$ be two sequences of ideals such that $I_{t}+J_{t} \subset \mathfrak{m}^{t}$. Then for any $y \in \Omega$: the open lower half complex plane, $\lim _{t \rightarrow \infty} F_{M, I+I_{t}, J+J_{t}}(y)=F_{M, I, J}(y)$. If J is \mathfrak{m}-primary, then the above holds for $y \in \mathbb{C}$. In either case, the convergence is uniform on a compact subset of Ω or \mathbb{C}.

Proof. Fix a compact subset K of Ω. Choose $\epsilon>0$ such that $\Im y<-\epsilon$ for all $y \in K$. Recall from Theorem 3.16, that there is a polynomial $P \in \mathbb{R}[t]$ such that $h_{n, M, I, J}(s) \leq P(s)$ for all $s \in \mathbb{R}$ and all n; so $h_{M, I+I_{t}, J+J_{t}}(s) \leq P(s)$ for all s. Notice $\left|P(s) e^{-\epsilon s}\right|$ is integrable on $\mathbb{R}_{\geq 0}$ and the sequence $h_{M, I+I_{t}, J+J_{t}}$ converges to $h_{M, I, J}$; the convergence is uniform on every compact subset of $(0, \infty)$; see Theorem 3.13. Say the absolute values of elements of K is bounded above by D. Given $\delta>0$, the observations above allows us to choose an interval $[a, b] \subseteq(0, \infty)$ and $t_{0} \in \mathbb{N}$ such that,
(a) $2 \int_{0}^{a}|P(s)| e^{-\epsilon s} d s+2 \int_{b}^{\infty}|P(s)| e^{-\epsilon s} d s \leq \frac{\delta}{2 D}$.
(b) $\left|h_{M, I+I_{t}, J+J_{t}}(x)-h_{M, I, J}(x)\right| \leq \frac{\delta}{2 D \int_{a}^{b} e^{-\epsilon s} d s}$ for all $t \geq t_{0}$ and all $s \in[a, b]$.

Therefore by using Theorem 4.3, for $y \in K$ and all $t \geq t_{0}$

$$
\begin{aligned}
\left|F_{M, I+I_{t}, J+J_{t}}(y)-F_{M, I, J}(y)\right| & \leq \int_{0}^{\infty}|y|\left|h_{M, I+I_{t}, J+J_{t}}(s)-h_{M, I, J}(s)\right| e^{-\epsilon s} d s \\
& \leq D\left[2 \int_{0}^{a}|P(s)| e^{-\epsilon s} d s+2 \int_{b}^{\infty}|P(s)| e^{-\epsilon s} d s\right. \\
& \left.+\int_{a}^{b}\left|h_{M, I+I_{t}, J+J_{t}}(s)-h_{M, I, J}(s)\right| e^{-\epsilon s} d s\right] \\
& \leq \delta
\end{aligned}
$$

This proves uniform convergence of $\left(F_{M, I+I_{t}, J+J_{t}}(y)\right)_{t}$ to $F_{M, I, J}(y)$ on every compact subset of Ω. The assertion for \mathfrak{m}-primary J follows from a similar argument.
7.2. Basic properties. Let R be a local ring, t be an indeterminate, I, J be \mathfrak{m}-primary ideals, M be a finitely generated R-module.

Theorem 7.3. [Tay18, Proposition 2.6] Assume I, J are two \mathfrak{m}-primary ideals. Then
(1) $\operatorname{dim} M<d$, then $h_{M, I, J, d}(s)=0$.
(2) $h_{M, I, J}$ is increasing.
(3) $h_{M, I, J}(s) \leq e(I, M) s^{d} / d$!.
(4) $h_{M, I, J}(s) \leq e_{H K}(J, M)$.

Theorem 7.4. The above (1) and (2) is still true if only $I+J$ is \mathfrak{m}-primary. (3) remains valid when I is \mathfrak{m}-primary and (4) remains valid when J is \mathfrak{m}-primary.

Proof. By \mathfrak{m}-adic continuity $\lim _{t \rightarrow \infty} h_{M, I+\mathfrak{m}^{t}, J+\mathfrak{m}^{t}}(s)=h_{M, I, J}(s)$ and $I+\mathfrak{m}^{t}, J+\mathfrak{m}^{t}$ are \mathfrak{m}-primary. We have:
(1) $\operatorname{dim} M<d$, then $h_{M, I+\mathfrak{m}^{t}, J+\mathfrak{m}^{t}, d}(s)=0$. Let $t \rightarrow \infty, h_{M, I, J, d}(s)=0$.
(2) For $s_{1}<s_{2}, h_{M, I+\mathfrak{m}^{t}, J+\mathfrak{m}^{t}}\left(s_{1}\right) \leq h_{M, I+\mathfrak{m}^{t}, J+\mathfrak{m}^{t}}\left(s_{2}\right)$. Let $t \rightarrow \infty, h_{M, I, J}\left(s_{1}\right) \leq$ $h_{M, I, J}\left(s_{2}\right)$.
(3) $h_{M, I, J+\mathfrak{m}^{t}}(s) \leq e(I, M) s^{d} / d$!. Let $t \rightarrow \infty$, we have $h_{M, I, J}(s) \leq e(I, M) s^{d} / d$!.
(4) $h_{M, I+\mathfrak{m}^{t}, J}(s) \leq e_{H K}(J, M)$. Let $t \rightarrow \infty$, we have $h_{M, I, J}(s) \leq e_{H K}(J, M)$.

Proposition 7.5. [Additivity]Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence of modules of dimension at most d. Let I, J be ideals such that $I+J$ is \mathfrak{m}-primary. Recall that the Kronecker delta notation $\delta_{a, b}$ represents zero if $a \neq b$ and 1 if $a=b$.
(1) $\mathcal{F}_{M, I, J}=\delta_{\operatorname{dim}(M), \operatorname{dim}\left(M^{\prime}\right)} \mathcal{F}_{M^{\prime}, I, J}+\delta_{\operatorname{dim}(M), \operatorname{dim}\left(M^{\prime \prime}\right)} \mathcal{F}_{M^{\prime \prime}, I, J}$ for $\mathcal{F}=h, F$;
(2) $f_{M}(s)=\delta_{\operatorname{dim}(M), \operatorname{dim}\left(M^{\prime}\right)} f_{M^{\prime}}(s)+\delta_{\operatorname{dim}(M), \operatorname{dim}\left(M^{\prime \prime}\right)} f_{M^{\prime \prime}}(s)$, whenever $h_{M, I, J}, \delta_{\operatorname{dim}(M), \operatorname{dim}\left(M^{\prime}\right)} h_{M^{\prime}, I, J}$, $\delta_{\operatorname{dim}(M), \operatorname{dim}\left(M^{\prime \prime}\right)}, h_{M^{\prime \prime}, I, J}$ are all differentiable at s.

Proof. (1)When $\mathcal{F}=h$, this is true by Proposition 3.32. Then Theorem 4.3 implies the statement for $\mathcal{F}=F_{M}$.
(2) follows from Theorem 5.8.

Corollary 7.6 (Associativity formula). The h-function, density function and FrobeniusPoincaré function satisfy the associativity formula. To be precise,
(1) let $\mathcal{F} \in\{h, F\}$, then

$$
\mathcal{F}_{M, d}(s)=\sum_{P \in \operatorname{Spec}(R), \operatorname{dim} R / P=\operatorname{dim} R} \lambda_{R_{P}}\left(M_{P}\right) \mathcal{F}_{R / P}(s),
$$

for all $s \in \mathbb{R}$.
(2) At a point s where $h_{R / P}$ is differentiable for all $P \in \operatorname{Assh}(R)$, the same associativity formula holds for the density function (i.e. $\mathcal{F}=f$) at s.
Theorem 7.7. Let (R, \mathfrak{m}, k) be a noetherian local ring of dimension d, M be a finitely generated module of dimension $d, I, I^{\prime}, J, J^{\prime}$ be R-ideals such that $I^{\prime} \subset I, J^{\prime} \subset J, I^{\prime}+J^{\prime}$ is \mathfrak{m}-primary. Then $h_{M, I^{\prime}, J^{\prime}}(s) \geq h_{M, I, J}(s)$ and equality holds if $I \subset \bar{I}^{\prime}$ and $J \subset J^{\prime *}$.
Proof. The first part of (3) is clear. Both sides are additive on M, so by the associativity formula, we can replace M with R / P where $\operatorname{dim} R / P=d$. The containment hypotheses on the ideals also hold for their images in R / P for any prime ideal P. So we may assume $M=R$ and R is a domain. By definition of the integral closure and tight closure we can choose a nonzero $c \in R$ such that $c I^{n} \subset I^{\prime n}$ and $c J^{[q]} \subset J^{[q]}$, thus $I^{[s q]}+J^{[q]} / I^{1\lceil s q]}+J^{\prime q]}$ is annihilated by c. So

$$
\begin{array}{r}
l\left(\frac{I^{[s q]}+J^{[q]}}{I^{[s q]}+J^{\prime[q]}}\right) \\
\leq l\left(0:_{\frac{R}{I^{\prime}[s q]}+J^{\prime}(q]} c\right) \\
R \\
=l\left(\frac{R}{c R+I^{\prime[s q]}+J^{\prime[q]}}\right) \leq C q^{d-1}
\end{array}
$$

The last equation is true because $\operatorname{dim} R / c R<\operatorname{dim} R$. This means

$$
0 \leq h_{n, M, I^{\prime}, J^{\prime}}(s)-h_{n, M, I, J}(s) \leq C q^{d-1}
$$

Dividing by q^{d} and take the limit when $q \rightarrow \infty$, we get $h_{M, I^{\prime}, J^{\prime}}(s)=h_{M, I, J}(s)$.
Theorem 7.8. Let $n_{0} \in \mathbb{N}$, then

$$
h_{M, I^{n_{0}, J}}(s)=h_{M, I, J}\left(s n_{0}\right), h_{M, I, J\left[p^{\left.n_{0}\right]}\right.}(s)=p^{n_{0} d} h_{M, I, J}\left(s / p^{n_{0}}\right) .
$$

Proof. If $s \leq 0$ then both sides of the equation are 0 and the equality holds. Now we assume $s>0$. By definition $h_{n, M, I^{n_{0}, J}}(s)=l\left(M / I^{n_{0}\lceil s q\rceil}+J^{[q]} M\right)$. Since $\left\lceil s q n_{0}\right\rceil \leq$ $n_{0}\lceil s q\rceil \leq\left\lceil s q n_{0}\right\rceil+n_{0}-1, h_{n, M, I, J}\left(s n_{0}\right) \leq h_{n, M, I_{0}^{n}, J}(s) \leq h_{n, M, I, J}\left(s n_{0}+\left(n_{0}-1\right) / q\right)$. We have $\lim _{n \rightarrow \infty}\left(h_{n, M, I, J}\left(s n_{0}+\left(n_{0}-1\right) / q\right)-h_{n, M, I, J}\left(s n_{0}\right)\right) / q^{d}=0$ by Theorem 3.20. So

$$
\lim _{n \rightarrow \infty} h_{n, M, I_{0}^{n}, J}(s) / q^{d}=\lim _{n \rightarrow \infty} h_{n, M, I, J}\left(s n_{0}\right) / q^{d}
$$

which means $h_{M, I_{0}^{n}, J}(s)=h_{M, I, J}\left(s n_{0}\right)$. We have $h_{\left.n, M, I, J\left[p^{n}\right]\right]}(s)=l\left(M / I^{[s q]}+J^{\left[q p_{0}^{n}\right]} M\right)=$ $l\left(M / I^{\left[s / p^{n} \cdot q p^{n_{0}}\right]}+J^{\left[q p_{0}^{n}\right]} M\right)$. So

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{h_{n, M, I, J\left[\mid p^{\left.n_{0}\right]}\right.}(s)}{q^{d}} \\
=p^{n_{0} d} \lim _{n \rightarrow \infty} \frac{h_{n+n_{0}, M, I, J}\left(s / p^{n_{0}}\right)}{q^{d} p^{n_{0} d}} \\
=p^{n_{0} d} h_{M, I, J}\left(s / p^{n_{0}}\right) .
\end{array}
$$

7.3. Integration and h-function. Let R be a local ring of characteristic $p, R[[t]]$ be a power series ring with indeterminate t. Let M be a finitely generated R-module, I, J be two R-ideals such that $I+J$ is \mathfrak{m}-primary. Let $M[[t]]=M \otimes_{R} R[[t]]$. We want to express $h_{M[t t], R[[t]],\left(I, t^{\alpha}\right),\left(J, t^{\beta}\right)}$ in terms of $h_{M, R, I, J}$.
Theorem 7.9. (1) $h_{M[t t], R[t]],\left(I, t^{\alpha}\right),\left(J, t^{\beta}\right)}(s)=\alpha \int_{s-\beta / \alpha}^{s} h_{M, R, I, J}(x) d x$
(2) $h_{M[t]], R[t]],\left(I, t^{\alpha}\right), J}(s)=\alpha \int_{0}^{s} h_{M, R, I, J}(x) d x$
(3) $h_{M[t]], R[t]], I,\left(J, t^{\beta}\right)}(s)=\beta h_{M, R, I, J}(s)$.

Proof. We will use the convention $I^{s}=R$ when $s \leq 0$. To prove the equality we may assume $s=s_{0} / q_{0} \in \mathbb{Z}[1 / p]$ because the functions on both sides are continuous when $s>0$. Then for $q \geq q_{0}, s q$ is an integer.

$$
h_{n, M[t t], R[[t]],\left(I, t^{\alpha}\right),\left(J, t^{\beta}\right)}=l\left(\frac{M[[t]]}{\left(\left(I, t^{\alpha}\right)^{s q}+\left(J^{[q]}, t^{\beta q}\right)\right) M[[t]]}\right)
$$

The above length is also equal to

$$
l\left(\frac{M[[t]]}{\left(\sum_{0 \leq j \leq s q} I^{s q-j} t^{\alpha j}+\left(J[q], t^{\beta q}\right)\right) M[[t]]}\right)
$$

But by the convention, it is also

$$
l\left(M[[t]] / \sum_{0 \leq j \leq \infty} I^{s q-j} t^{\alpha j}+\left(J^{[q]}, t^{\beta q}\right) M[[t]]\right)
$$

and because the existence of the $t^{\beta q}$-term, it is also equal to

$$
l\left(M[[t]] /\left(\sum_{0 \leq j \leq\lfloor\beta q / \alpha\rfloor} I^{s q-j} t^{\alpha j}+\left(J^{[q]}, t^{\beta q}\right)\right) M[[t]]\right)
$$

Note that the module inside is nonzero only in t-degree at most $\beta q-1$. So summing up over the lengths in different t-degrees, the above length is also equal to the following sum:

$$
\sum_{0 \leq x \leq \beta q-1} l\left(M /\left(J^{[q]}+I^{s q-\lfloor x / \alpha\rfloor}\right) M\right)
$$

Let $y=\lfloor x / \alpha\rfloor$. Up to adding a term of $O\left(q^{d}\right)$, it is equal to

$$
\alpha \sum_{0 \leq y \leq\lfloor\beta q / \alpha\rfloor} l\left(M / J^{[q]}+I^{s q-y} M\right)
$$

which is exactly

$$
\begin{aligned}
& \alpha \sum_{0 \leq y \leq\lfloor\beta q / \alpha\rfloor} h_{n, M, I, J}(s-y / q) \\
= & \alpha q \int_{s-\lfloor\beta q / \alpha\rfloor / q-1 / q}^{s} h_{n, M, I, J}(x) d x
\end{aligned}
$$

Now we divide by q^{d+1} and take the limit, then $O\left(q^{d}\right)$-term disappears, so the left is

$$
=\alpha \int_{s-\beta / \alpha}^{s} h_{M, I, J}(x) d x
$$

Since the equation

$$
h_{M[t t], R[t t],\left(I, t^{\alpha}\right),\left(J, t^{\beta}\right)}=\alpha \int_{s-\beta / \alpha}^{s} h_{M, R, I, J}(x) d x
$$

is true on $\mathbb{Z}[1 / p]$ and both sides are continuous with respect to s, they are equal on all of \mathbb{R}. The rest of the two equations can be obtained by taking limit as α or β goes to infinity and using the \mathfrak{m}-adic continuity proven in Theorem 3.13.

7.4. Ring extension.

Proposition 7.10. Let $(R, \mathfrak{m}) \rightarrow(S, \mathfrak{n})$ be a local map such that $\mathfrak{m} S$ is \mathfrak{n}-primary and $\operatorname{dim} R=\operatorname{dim} S$. Then

$$
h_{M \otimes_{R} S, S, I S, J S}(s) \leq l_{S}(S / \mathfrak{m} S) h_{M, R, I, J}(s) .
$$

The equality holds when S is flat over R.
Proof. For any \mathfrak{m}-primary ideal \mathfrak{a}, we have that $l_{S}\left(M \otimes_{R} S /(\mathfrak{a} S) M \otimes_{R} S\right) \leq l_{R}(M / \mathfrak{a} M) l_{S}(S / \mathfrak{m} S)$. This means $h_{n, M \otimes_{R} S, S, I S, J S}(s) \leq l(S / \mathfrak{m}) h_{n, M, R, I, J}(s)$. All these equalities will hold if S is flat over R.

8. Head and Tail of the h-function

In this section, we discuss the behaviour of $h(s)$ near zero and s large enough. The regions near zero and away from zero where the h-function often shows interesting behaviour are marked by two other already known invariants, namely F-limbus and F-threshold. F threshold is a well-known numerical invariant in characteristic p which compares the ordinary power and Frobenius power; it was defined as a limsup in [Hun+08a] and [MTW04], and is shown to be a limit in [DNP18]. The F-limbus is less known, which is defined in [Tay18].

Definition 8.1. Let R be a ring of characteristic $p>0$ which is not necessarily local, and let I, J be ideals of R. Define

$$
\begin{gathered}
c_{I}^{J}(n)=\sup \left\{t \in \mathbb{N}: I^{t} \nsubseteq J^{\left[p^{n}\right]}\right\} \\
c^{J}(I)=\lim _{n \rightarrow \infty} \frac{\sup \left\{t \in \mathbb{N}: I^{t} \nsubseteq J^{\left[p^{n}\right]}\right\}}{p^{n}} \\
b_{I}^{J}(n)=\inf \left\{t \in \mathbb{N}: J^{\left[p^{n}\right]} \nsubseteq I^{t}\right\} \\
b^{J}(I)=\lim _{n \rightarrow \infty} \frac{\inf \left\{t \in \mathbb{N}: J^{\left[p^{n}\right]} \nsubseteq I^{t}\right\}}{p^{n}}
\end{gathered}
$$

The number $c^{J}(I)$ is called the F-threshold of I with respect to J and the number $b^{J}(I)$ is called the F-limbus of I with respect to J. The following properties are well known, For example, see [Tay18, Lemma 3.2].

Lemma 8.2. Let R be a ring of characteristic $p>0$, and let I, J be proper ideals of R.
(1) For any I, J, any limit above either exists or goes to infinity.
(2) If I is contained in the Jacobson radical of $R, I \nsubseteq$ nil (R), then $b^{J}(I) \leq c^{J}(I)$.
(3) If $I \nsubseteq \sqrt{J}$ then $c^{J}(I)=\infty$.
(4) If $I \subset \sqrt{J}$ then $0 \leq c^{J}(I)<\infty$.
(5) If $J \nsubseteq \sqrt{I}$ then $b^{J}(I)=0$.
(6) If $J \subset \sqrt{I}$ then $0<b^{J}(I) \leq \infty$.
(7) If $I \subset \operatorname{Rad}(R), I \nsubseteq \operatorname{nil}(R), I \subset \sqrt{J}, J \subset \sqrt{I}$, then $0<b^{J}(I) \leq c^{J}(I)<\infty$.

Lemma 8.3. Let (R, \mathfrak{m}) be a local ring of dimension d and characteristic p, let I, J be two proper ideals of R, and let M be a finitely generated R-module.
(1) If I is \mathfrak{m}-primary, then $b^{J}(I)>0$ and for $s \leq b^{J}(I), h_{M}(s)=\frac{s^{d}}{d!} e(I, M)$.
(2) If J is \mathfrak{m}-primary, then $c^{J}(I)<\infty$ and for $s \geq c^{J}(I), h_{M}(s)=e_{H K}(J, M)$.

Proof. The above Lemma is a generalization of Lemma 3.3 of [Tay18]. The proof is identically the same since it only uses the containment relation, which does not depend on whether I, J are \mathfrak{m}-primary or not. If I is \mathfrak{m}-primary then $J \subset \sqrt{I}$, so $b^{J}(I)>0$; if J is \mathfrak{m}-primary then $I \subset \sqrt{J}$, so $c^{J}(I)<\infty$.
8.1. Tail of the h-function: F-threshold, minimal stable point and maximal support. Let (R, \mathfrak{m}) be a local ring of characteristic $p>0, I, J$ are R-ideals. Assume J is \mathfrak{m}-primary. By Lemma 8.3, (2), when J is \mathfrak{m}-primary, the h-function becomes a constant $e_{H K}(J, M)$ when $s \gg 0$. Since $h(s)$ is increasing, $h_{M}(s) \leq e_{H K}(J, M)$ for any s. The h-function is also an increasing function, so there is a minimal point after which $h_{M, I, J}(s)$ becomes constant. Define

$$
\alpha_{M, I, J}=\sup \left\{s \mid h_{M, I, J}(s) \neq e_{H K}(J, M)\right\}=\min \left\{s \mid h_{M, I, J}(s)=e_{H K}(J, M)\right\} .
$$

We relate $\alpha_{R, I, J}$ to other seemingly unrelated invariants of (I, J).
Definition 8.4. Let (R, \mathfrak{m}, k) be a local ring of characteristic $p>0, I, J$ be two R-ideal, $I \subset \sqrt{J}$. Let

$$
r_{I}^{J}(n)=\max \left\{t \in \mathbb{N} \mid I^{t} \nsubseteq\left(J^{\left[p^{n}\right]}\right)^{*}\right\},
$$

where $\left(J^{\left[p^{n}\right]}\right)^{*}$ denotes the tight closure of $J^{\left[p^{n}\right]}$; see Definition 2.5.

$$
\begin{aligned}
& r^{J}(I)^{+}=\varlimsup_{\lim _{n \rightarrow \infty}} \frac{r_{I}^{J}(n)}{p^{n}} . \\
& r^{J}(I)^{-}=\underline{\lim }_{n \rightarrow \infty} \frac{r_{I}^{J}(n)}{p^{n}} .
\end{aligned}
$$

Under mild hypothesis, in Theorem 8.6, we show that $r^{J}(I)^{+}=r^{J}(I)^{-}=\alpha_{R, I, J}$.
Lemma 8.5. Let (R, \mathfrak{m}, k) be a reduced d-dimensional local ring of characteristic $p>0$, I, J be two R-ideals. Then $e_{H K}(J, R)=\lim _{n \rightarrow \infty} l\left(R /\left(J^{[q]}\right)^{*}\right) / q^{d}$.
Proof. It suffices to show $\lim _{n \rightarrow \infty} l\left(\left(J^{[q]}\right)^{*} / J^{[q]}\right) / q^{d}=0$. By assumption R is reduced, F finite. So there is a test element $c \in R$, which is in particular not contained in any minimal prime of R; see $\left[\mathrm{HH} 90\right.$, sec 6]. Since $c\left(J^{[q]}\right)^{*} \subseteq J^{[q]}$ for all n, we have $l\left(\left(J^{[q]}\right)^{*} / J^{[q]}\right) \leq$ $l\left(0_{R / J[q]}: c\right)=l\left(R / c R+J^{[q]}\right) \leq C q^{d-1}$ for some constant C, so $\lim _{n \rightarrow \infty} l\left(\left(J^{[q]}\right)^{*} / J^{[q]}\right) / q^{d}=$ 0.

Theorem 8.6. Let (R, \mathfrak{m}, k) be a reduced formally equidimensional ring ${ }^{4}$ of characteristic $p>0$, I be an R-ideal, J be an \mathfrak{m}-primary R-ideal. Then $r^{J}(I)^{+}=r^{J}(I)^{-}=\alpha_{R, I, J}$. In particular, $r^{J}(I)=\lim _{n \rightarrow \infty} r^{J}(I)(n) / p^{n}$ exists.
Proof. Obviously $r^{J}(I)^{+} \geq r^{J}(I)^{-}$, so it suffices to prove $r^{J}(I)^{+} \leq \alpha_{R, I, J} \leq r^{J}(I)^{-}$. Since $\mathbb{Z}[1 / p]$ is dense in \mathbb{R}, it suffices to prove:
(1) For $x \in \mathbb{Z}[1 / p]$, if $x>r^{J}(I)^{-}$, then $x \geq \alpha_{R, I, J}$;
(2) For $x \in \mathbb{Z}[1 / p]$, if $x<r^{J}(I)^{+}$, then $x \leq \alpha_{R, I, J}$.
(1): If $x>r^{J}(I)^{-}$, then there is an infinite sequence n_{i}, such that $x p^{n_{i}}>r^{J}(I)\left(n_{i}\right)$ and $x p^{n_{i}}$ is an integer for all i. By definition of $r_{n}, I^{x p^{n_{i}}} \subset\left(J^{\left[p^{n_{i}}\right]}\right)^{*}$. So

$$
h_{R, I, J}(x)=\lim _{i \rightarrow \infty} l\left(R / I^{\left[s p^{n_{i}}\right]}+\left(J^{\left[p^{\left.n_{i}\right]}\right.}\right)^{*}\right) / q^{d}=\lim _{i \rightarrow \infty} l\left(R /\left(J^{\left[p^{\left.n_{i}\right]}\right.}\right)^{*}\right) / q^{d}=e_{H K}(J, R) .
$$

So $x \geq \alpha_{R, I, J}$.
(2): If $x<r^{J}(I)^{+}$, then there is a integer n_{0}, such that $x p^{n_{0}} \leq r^{J}(I)\left(n_{0}\right)$ and $x p^{n_{0}}$ is an integer. Let $q_{0}=p^{n_{0}}$. By definition of $r^{J}(I)(n), I^{x q_{0}} \nsubseteq\left(J^{\left[q_{0}\right]}\right)^{*}$. Choose $f \in I^{x q_{0}} \backslash\left(J^{\left[q_{0}\right]}\right)^{*}$.

[^3]Let $\tilde{J}=J^{\left[q_{0}\right]}+f R$; then $e_{H K}(\tilde{J}, R)<e_{H K}\left(J^{\left[q_{0}\right]}, R\right)$; see [Hun13, Thm 5.5], [HH90, Thm 8.17]. Now fix an $s<x q_{0}$. Then for any $q=p^{n}$, $s q<x q q_{0}$. Since $f \in I^{x q_{0}}$. So $f^{q} \in I^{x q q_{0}} \subseteq I^{\lceil s q\rceil}$. So

$$
I^{[s q]}+\left(J^{\left[q_{0}\right]}+f R\right)^{[q]}=I^{[s q]}+\left(J^{\left[q_{0}\right]}\right)^{[q]} .
$$

This means $h_{R, I, \tilde{J}}(s)=h_{R, I, J\left[q_{0}\right]}(s)$. So for $s<x q_{0}, h_{R, I, J\left[q_{0}\right]}(s)=h_{R, I, \tilde{\tilde{J}}}(s) \leq e_{H K}(\tilde{J}, R)<$ $e_{H K}\left(J^{\left[q_{0}\right]}, R\right)$. This means $\alpha_{R, I, J\left[q_{0}\right]} \geq x q_{0}$. By Theorem 7.8, $h_{R, I, J\left[q_{0}\right]}(s)=q_{0}^{d} h_{R, I, J}\left(s / q_{0}\right)$, $\alpha_{R, I, J}=\frac{\alpha_{R, I, J}\left[q_{0}\right]}{q_{0}} \geq x$.

Since $h_{M}(s)$ is the integration of $f_{M}(s)$, we see the minimal stable point of h_{M} is the maximal support of f_{M}. Precisely,

Corollary 8.7. Let (R, \mathfrak{m}, k) be a local ring of characteristic $p>0, I$ be an R-ideal, J be an \mathfrak{m}-primary R-ideal. Then $\alpha_{R, I, J}=\sup \left\{s \mid f_{R, I, J}(s)\right.$ exists and is nonzero $\}$. Moreover for $s>\alpha_{R, I, J}, f_{R, I, J}(s)$ is zero.

Proof. For $s>\alpha_{R, I, J}, h_{I, J}(s)$ is constant. So by Theorem 5.8, $f_{I, J}$ exists and is zero. Since $h_{I, J}$ is the integral of the density function (Theorem 6.4) and h is a non-constant increasing function on ($0, \alpha_{R, I, J}$) for any $0<a<\alpha_{R, I, J}, f_{I, J}$ has to be non-zero on a set of non-zero measure.

Remark 8.8. Recall from Theorem 6.7 that for standard graded (R, m) of Krull dimension at least two and a finite colength homogeneous ideal J, Trivedi's density function $\tilde{g}_{R, J}$ coincides with $f_{R, \mathbf{m}, J}$ and both are continuous. So Theorem 8.6 gives a precise description of the support of $\tilde{g}_{R, J}$. Thus Theorem 8.6 and the theorem below extends [TW22, Thm 4.9], where $\alpha_{R, J}$ is shown to coincide with the F-threshold $c^{J}(\mathfrak{m})$ under suitable hypothesis.

Theorem 8.9. Let (R, \mathfrak{m}, k) be a local ring of characteristic $p>0$, I be an R-ideal, J be an \mathfrak{m}-primary R-ideal. Then $c^{J}(I)=r^{J}(I)$ is true under either of the assumptions below:
(1) There exists a sequence of positive numbers r_{n}^{\prime} such that $I^{r_{n}^{\prime}} \subset J^{[q]}:\left(J^{[q]}\right)^{*}$ for infinitely many $q \gg 0$ and $\lim _{n} r_{n}^{\prime} / p^{n} \rightarrow 0$.
(2) There exists a constant n_{0} such that $I^{n_{0}} \subset J^{[q]}:\left(J^{[q]}\right)^{*}$ for infinitely many $q \gg 0$.
(3) R is F-rational ${ }^{5}$, i.e. the tight closure of every parameter ideal coincides with the ideal and J is a parameter ideal.
(4) $I \subset \sqrt{\tau(R)}$, where $\tau(R)=\cap_{\mathfrak{a} \subset R} \mathfrak{a}: \mathfrak{a}^{*}$ is the test ideal of R. See [HH90, Definition 8.22, Proposition 8.23] for details on the test ideal.
(5) (Theorem 4.9, [TW21]) R is strongly F-regular on the punctured spectrum.

Proof. (1) By definition $r_{I}^{J}(n) \leq c_{I}^{J}(n)$, and the condition implies $c_{I}^{J}(n) \leq r_{I}^{J}(n)+r_{n}$, so $\lim _{n}\left(c_{I}^{J}(n)-r_{I}^{J}(n)\right) / p^{n}=0$ and $c^{J}(I)=r^{J}(I)$.
(2) By (1) and the fact that $\lim _{n} n_{0} / n=0$.
(3) If J is a parameter ideal, so is $J^{[q]}$. Since R is F-rational, $J^{[q]}:\left(J^{[q]}\right)^{*}=R$ for any q, so $n_{0}=1$ satisfies the assumption of (2).
(4) There exist an n_{0} such that $I^{n_{0}} \subset \tau(R) \subset \cap_{q} J^{[q]}:\left(J^{[q]}\right)^{*}$, and this n_{0} satisfies the assumption of (2).
(5) In this case $\tau(R)$ is either \mathfrak{m}-primary or is the unit ideal, so $I \subset \sqrt{\tau(R)}$ always holds.

[^4]8.2. Head of the h-function: order of h_{M} at $\mathbf{0}$ and Hilbert-Kunz multiplicity of quotient rings. So far we have proven continuity of the h-function on $\mathbb{R}_{>0}$; see Theorem 3.20, Theorem 3.31. In this section we determine when $h_{M, I, J}$ is continuous at $s=0$; see Theorem 8.13. In Theorem 8.11, we determine the order of vanishing of h functions near the origin and show that the asymptotic behaviour of $h_{I, J}$ near the origin captures other numerical invariants of (R, I, J). A major intermediate step involved in proving Theorem 8.11 is Theorem 8.10, which boils down to proving commutation of the order of a double limit. We lay the groundwork for that.

Let (R, \mathfrak{m}, k) be a local ring of characteristic $p>0, I, J$ be two R-ideals such that $I+J$ is \mathfrak{m}-primary. Let $d=\operatorname{dim} R, d^{\prime}=\operatorname{dim} R / I$. For a positive integer s_{0}, consider the sequence of real numbers:

$$
\Gamma_{s_{0}, m, n}=\frac{l\left(R / I^{s o p^{n}}+J^{\left[p^{n} p^{m}\right]}\right)}{p^{n d} p^{m d^{\prime}} s_{0}^{d-d^{\prime}}}
$$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \Gamma_{s_{0}, m, n}=\frac{h_{R}\left(s_{0} / p^{m}\right)}{\left(s_{0} / p^{m}\right)^{d-d^{\prime}}} . \tag{8.1}\\
& \lim _{m \rightarrow \infty} \Gamma_{s_{0}, m, n}=\frac{e_{H K}\left(J^{\left[p^{n}\right]}, R / I^{s_{0} p^{n}}\right)}{p^{n d} s_{0}^{d-d^{\prime}}} \\
&= \frac{e_{H K}\left(J, R / /^{s o p^{n}}\right)}{\left(s_{0} p^{n}\right)^{d-d^{\prime}}} \\
&= \frac{1}{\left(s_{0} p^{n}\right)^{d-d^{\prime}}} \sum_{P \in \operatorname{Assh}(R / I)} e_{H K}(J, R / P) l_{R_{P}}\left(R_{P} / I^{s_{0} p^{n}} R_{P}\right) .
\end{align*}
$$

For $P \in \operatorname{Assh}(R / I)$, we have $h t(P) \leq \operatorname{dim} R-\operatorname{dim} R / P=\operatorname{dim} R-\operatorname{dim} R / I=d-d^{\prime}$. So

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{s_{0}, m, n} & =\lim _{n \rightarrow \infty} \frac{1}{\left(s_{0} p^{n}\right)^{d-d^{\prime}}} \sum_{P \in \operatorname{Ash}(R / I)} e_{H K}(J, R / P) l_{R_{P}}\left(R_{P} / I^{s_{0} p^{n}} R_{P}\right) \\
& =\frac{1}{\left(d-d^{\prime}\right)!} \sum_{P \in \operatorname{Assh}(R / I)} e_{H K}(J, R / P) e\left(I, R_{P}\right)
\end{aligned}
$$

Since R is F-finite domain and hence an excellent domain (see [Kun76]), for all $P \in$ $\operatorname{Assh}(R / I), h t(P)=d-d^{\prime}$. So the above quantity is

$$
\frac{1}{\left(d-d^{\prime}\right)!} \sum_{P \in \operatorname{Assh}(R / I)} e_{H K}(J, R / P) e\left(I R_{P}, R_{P}\right) .
$$

When R is a Cohen-Macaulay domain and I is part of a system of parameters, the above quantity recovers the Hilbert-Kunz multiplicity $e_{H K}(J, R / I)$ as,

$$
\begin{aligned}
& \sum_{P \in \operatorname{Assh}(R / I)} e_{H K}(J, R / P) e\left(I R_{P}, R_{P}\right) \\
= & \sum_{P \in \operatorname{Assh}(R / I)} e_{H K}(J, R / P) l\left(R_{P} / I R_{P}\right) \\
= & e_{H K}(J, R / I)
\end{aligned}
$$

Theorem 8.10. Assume R is a domain and $I \neq 0$ and J be such that $I+J$ is \mathfrak{m}-primary. Fix a positive integer s_{0}. Set $\operatorname{dim}(R / I)=d^{\prime}$. Then

$$
\lim _{m \rightarrow \infty} \frac{h\left(s_{0} / p^{m}\right)}{\left(s_{0} / p^{m}\right)^{d-d^{\prime}}}=\frac{1}{\left(d-d^{\prime}\right)!} \sum_{P \in \operatorname{Assh}(R / I)} e_{H K}(J, R / P) e\left(I, R_{P}\right) .
$$

Proof. We use the notation set above in this subsection. It follows from Equation (8.1) and above that we need to show

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \Gamma_{s_{0}, m, n}=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{s_{0}, m, n}
$$

We already see that $\lim _{n \rightarrow \infty} \Gamma_{s_{0}, m, n}$ and $\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{s_{0}, m, n}$ exists. We claim that that the sequence $n \rightarrow \Gamma_{s_{0}, m, n}$ is uniformly convergent in terms of m; then, by argument of analysis, we get $\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \Gamma_{s_{0}, m, n}$ exists, and is equal to $\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{s_{0}, m, n}$.

To this end, we prove that there exist a constant C such that $\left|\Gamma_{s o, m, n+1}-\Gamma_{s_{0}, m, n}\right| \leq C / p^{n}$ for all m, which implies that $\left|\lim _{n \rightarrow \infty} \Gamma_{s_{0}, m, n}-\Gamma_{s_{0}, m, n}\right| \leq 2 C / p^{n}$ for all m. We can prove it in two steps: we first prove there is a constant C_{1} such that $\Gamma_{s_{0}, m, n+1}-\Gamma_{s_{0}, m, n} \leq$ C_{1} / p^{n}, then we prove there is a constant C_{2} such that $\Gamma_{s_{0}, m, n}-\Gamma_{s_{0}, m, n+1} \leq C_{2} / p^{n}$, then $C=\max \left\{\left|C_{1}\right|,\left|C_{2}\right|\right\}$ satisfies the statement of the claim. Without loss of generality we assume $\frac{R}{m}$ is a perfect field; see Remark 3.15.

Choice of C_{1} : since $\operatorname{dim} R=d$, there is an exact sequence

$$
0 \rightarrow R^{\oplus p^{d}} \rightarrow F_{*} R \rightarrow N \rightarrow 0
$$

where N is an R-module with $\operatorname{dim} N<d$. Then we have

$$
\left(R / I^{s_{0} p^{n}}+J^{\left[p^{n} p^{m}\right]}\right)^{\oplus p^{d}} \rightarrow F_{*} R /\left(I^{s o p^{n}}+J^{\left[p^{n} p^{m}\right]}\right) F_{*} R \rightarrow N / I^{s o p^{n}}+J^{\left[p^{n} p^{m}\right]} N \rightarrow 0 .
$$

This means
$l\left(\frac{R}{I^{s 0 p^{n+1}}+J J^{\left[p^{n+1} p^{m]}\right]}}\right) \leq l\left(\frac{R}{I^{s p^{n}[p]}+J^{\left[p^{n+1} p^{m}\right]}}\right) \leq p^{d} l\left(\frac{R}{I^{s_{0} p^{n}}+J^{\left[p^{n} p^{m}\right]}}\right)+l\left(\frac{N}{\left(I^{s p^{n}}+J^{\left[p^{n} p^{m}\right]}\right) N}\right)$.
So dividing $p^{(n+1) d} p^{m d^{\prime}} s_{0}^{d-d^{\prime}}$, we get

$$
\Gamma_{s_{0}, m, n+1} \leq \Gamma_{s_{0}, m, n}+l\left(N / I^{s o p^{n}}+J^{\left[p^{n} p^{m}\right]} N\right) / p^{(n+1) d} p^{m d^{\prime}} s_{0}^{d-d^{\prime}}
$$

Now we claim that there is a constant $C_{1}>0$ that depends on N, I, J and s_{0} but is independent of m, n such that $l\left(N / I^{s o p^{n}}+J^{\left[p^{n} p^{m}\right]} N\right) / p^{n(d-1)+d} p^{m d^{\prime}} s_{0}^{d-d^{\prime}} \leq C_{1}$. We have

$$
\begin{aligned}
l\left(N / I^{s_{0} p^{n}}+J^{\left[p^{n} p^{m}\right]} N\right) & \leq l\left(N / I^{s_{0}\left[p^{n}\right]}+J^{\left[p^{n} p^{m}\right]} N\right) \\
& =l\left(F_{*}^{n} N / I^{s_{0}}+J^{\left[p^{m}\right]} F_{*}^{n} N\right) \\
& \leq \mu_{R}\left(F_{*}^{n} N\right) l\left(R / I^{s_{0}}+J^{\left[p^{m}\right]}\right)
\end{aligned}
$$

Since $\operatorname{dim} N \leq d-1$ and $\operatorname{dim} R / I=d^{\prime}, \mu_{R}\left(F_{*}^{n} N\right) / p^{n(d-1)}$ and $l\left(R / I^{s_{0}}+J^{\left[p^{m}\right]}\right) / p^{m d^{\prime}}$ are both bounded. And $p^{-d} s_{0}^{d-d^{\prime}}$ is independent of m, n. This means there is a constant $C_{1}>0$ that depends on N, I, J and s_{0} but is independent of m, n such that $l\left(N / I^{s_{0} p^{n}}+\right.$ $\left.J^{\left[p^{n} p^{m}\right]} N\right) / p^{n(d-1)+d} p^{m d^{\prime}} s_{0}^{d-d^{\prime}} \leq C_{1}$. Thus we have

$$
\Gamma_{s_{0}, m, n+1} \leq \Gamma_{s_{0}, m, n}+C_{1} / p^{n}
$$

Choice of C_{2} : since $\operatorname{dim} R=d$, there is an injection $F_{*} R \xrightarrow{\phi} R^{\oplus p^{d}}$ where dim Coker $\phi<$ $\operatorname{dim} R$. Let μ be the minimal number of generators of I. Choose $0 \neq c \in I$ and let $\psi=c^{\mu} \phi$. Since R is a domain, ψ is still an injection, and we have a short exact sequence

$$
0 \rightarrow F_{*} R \xrightarrow{\psi} R^{\oplus p^{d}} \rightarrow N^{\prime} \rightarrow 0
$$

and we have $\operatorname{dim} N^{\prime}<\operatorname{dim} R$.

$$
F_{*} R /\left(I^{s o p^{n}}+J^{\left[p^{n} p^{m}\right]}\right) F_{*} R \xrightarrow{\bar{\Phi}}\left(R / I^{s o p^{n}}+J^{\left[p^{n} p^{m}\right]}\right)^{\oplus p^{d}} \rightarrow N^{\prime} / I^{s o p^{n}}+J^{\left[p^{n} p^{m}\right]} N^{\prime} \rightarrow 0
$$

We claim that $\bar{\phi}$ induces an R-linear map $\Phi: F_{*}\left(R /\left(I^{s_{0} p^{n+1}}+J^{\left[p^{n+1} p^{m}\right]}\right)\right) \xrightarrow{\bar{\phi}}\left(R / I^{s_{0} p^{n}}+\right.$ $\left.J^{\left[p^{n} p^{m}\right]} \oplus\right)^{d}$. It suffices to show $\psi\left(F_{*}\left(I^{s o p^{n+1}}+J^{\left[p^{n+1} p^{m}\right]}\right)\right) \in\left(I^{s 0 p^{n}}+J^{\left[p^{n} p^{m}\right]}\right)^{\oplus p^{d}}$. We have $I^{s o p^{n+1}}=I^{s o p^{n} p} \subset I^{\left(s o p^{n}-\mu\right)[p]}$. So

$$
\begin{array}{r}
\psi\left(F_{*}\left(I^{s_{0} p^{n+1}}+J^{\left[p^{n+1} p^{m}\right]}\right)\right) \\
\subset \psi\left(F_{*}\left(I^{\left(s_{0} p^{n}-\mu\right)[p]}+J^{\left[p^{n+1} p^{m}\right]}\right)\right) \\
\subset I^{\left(s_{o} p^{n}-\mu\right)}+J^{\left[p^{n} p^{m}\right]} \psi\left(F_{*} R\right) \\
\subset c^{\mu}\left(I^{\left(s_{0} p^{n}-\mu\right)}+J^{\left[p^{n} p^{m}\right]}\right) \phi\left(F_{*} R\right) \\
\subset I^{\left(s_{0} p^{n}\right)}+J^{\left[p^{n} p^{m]}\right.} \phi\left(F_{*} R\right) \\
\subset\left(I^{\left(s_{0} p^{n}\right)}+J^{\left[p^{n} p^{m}\right]}\right)^{\oplus p^{d}} .
\end{array}
$$

This induces an exact sequence

$$
F_{*}\left(R /\left(I^{s p^{n+1}}+J^{\left[p^{n+1} p^{m}\right]}\right)\right) \rightarrow\left(R / I^{s 0 p^{n}}+J^{\left[p^{n} p^{m}\right]}\right)^{\oplus p^{d}} \rightarrow N^{\prime} / I^{s o p^{n}}+J^{\left[p^{n} p^{m}\right]} N^{\prime} \rightarrow 0
$$

Therefore,

$$
p^{d} l\left(R / I^{s_{0} p^{n}}+J^{\left[p^{n} p^{m}\right]}\right) \leq l\left(R / I^{s_{0} p^{n+1}}+J^{\left[p^{n+1} p^{m}\right]}+l\left(N^{\prime} / I^{s_{0} p^{n}}+J^{\left[p^{n} p^{m}\right]} N^{\prime}\right)\right.
$$

So dividing $p^{(n+1) d} p^{m d^{\prime}} s_{0}^{d-d^{\prime}}$, we get

$$
\Gamma_{s_{0}, m, n+1} \leq \Gamma_{s_{0}, m, n}+l\left(N^{\prime} / I^{s_{0} p^{n}}+J^{\left[p^{n} p^{m}\right]} N^{\prime}\right) / p^{(n+1) d} p^{m d^{\prime}} s_{0}^{d-d^{\prime}}
$$

Since $\operatorname{dim} N^{\prime}<\operatorname{dim} R$, we can use the same proof in the previous step to show that there is a constant $C_{2}>0$ that depends on N^{\prime}, I, J and s_{0} but independent of m, n such that $l\left(N^{\prime} / I^{s p^{n}}+J^{\left[p^{n} p^{m}\right]} N^{\prime}\right) / p^{n(d-1)+d} p^{m d^{\prime}} s_{0}^{d-d^{\prime}} \leq C_{2}$, so

$$
\Gamma_{s_{0}, m, n} \leq \Gamma_{s_{0}, m, n+1}+C_{2} / p^{n} .
$$

Theorem 8.11. Let (R, \mathfrak{m}, k) be a local domain, I, J be two R-ideals, $I \neq 0, I+J$ is \mathfrak{m}-primary. Let $d=\operatorname{dim} R, d^{\prime}=\operatorname{dim} R / I$. Then:
(1) $\lim _{s \rightarrow 0+} h(s) / s^{d-d^{\prime}}=\frac{1}{\left(d-d^{\prime}\right)!} \sum_{P \in \operatorname{Assh}(R / I)} e_{H K}(J, R / P) e\left(I, R_{P}\right)$.
(2) The order of vanishing $h(s)$ at $s=0$ is exactly $d-d^{\prime}$.
(3) $h(s)$ is continuous at 0 .

Proof. (1) Let $\frac{1}{\left(d-d^{\prime}\right)!} \sum_{P \in \operatorname{Assh}(R / I), h t(P)=d-d^{\prime}} e_{H K}(J, R / P) e\left(I, R_{P}\right)=c=c_{I, J}$, which is a constant that only depends on I, J. The last theorem implies for any fixed s_{0},

$$
\lim _{m \rightarrow \infty} h\left(s_{0} / p^{m}\right) /\left(s_{0} / p^{m}\right)^{d-d^{\prime}}=c
$$

Choose a sequence $\left\{s_{i}\right\}_{i} \subset(0, \infty)$ such that $\lim _{i \rightarrow \infty} s_{i}=0$ and $\lim _{i \rightarrow \infty} h\left(s_{i}\right) / s_{i}^{d-d^{\prime}}$ exists. Below we argue that $\lim _{i \rightarrow \infty} h\left(s_{i}\right) / s_{i}^{d-d^{\prime}}=c$; then (1) follows. Fix any $n_{0} \in \mathbb{N}$. There exists an integer α_{i} for each s_{i} such that $s_{i} p^{\alpha_{i}} \in\left(p^{n_{0}-1}, p^{n_{0}}\right]$. Since $h(s)$ is an
increasing function,

$$
\begin{gathered}
\frac{h\left(\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor / q^{\alpha_{i}}\right)}{\left(\left(\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor+1\right) / q^{\alpha_{i}}\right)^{d-d^{\prime}}} \leq \frac{h\left(s_{i}\right)}{s_{i}^{d-d^{\prime}}} \leq \frac{h\left(\left\lceil s_{i} q^{\alpha_{i}}\right\rceil / q^{\alpha_{i}}\right)}{\left(\left(\left\lceil s_{i} q^{\alpha_{i}}\right\rceil-1\right) / q^{\alpha_{i}}\right)^{d-d^{\prime}}} \\
\Longrightarrow\left(\frac{\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor}{\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor+1}\right)^{d-d^{\prime}} \frac{h\left(\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor / q^{\alpha_{i}}\right)}{\left(\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor / q^{\alpha_{i}}\right)^{d-d^{\prime}}} \leq \frac{h\left(s_{i}\right)}{s_{i}^{d-d^{\prime}}} \leq\left(\frac{\left\lceil s_{i} q^{\alpha_{i}}\right\rceil}{\left\lceil s_{i} q^{\left.\alpha_{i}\right\rceil}-1\right.}\right)^{d-d^{\prime}} \frac{h\left(\left\lceil s_{i} q^{\left.\alpha_{i}\right\rceil / q^{\alpha_{i}}}\right)\right.}{\left(\left\lceils_{i} q^{\left.\left.\alpha_{i}\right\rceil / q^{\alpha_{i}}\right)^{d-d^{\prime}}}\right.\right.} \\
\Longrightarrow\left(\frac{p^{n_{0}-1}}{p^{n_{0}-1}+1}\right)^{d-d^{\prime}} \frac{h\left(\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor / q^{\alpha_{i}}\right)}{\left(\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor / q^{\alpha_{i}}\right)^{d-d^{\prime}}} \leq \frac{h\left(s_{i}\right)}{s_{i}^{d-d^{\prime}}} \leq\left(\frac{p^{n_{0}-1}}{p^{n_{0}-1}-1}\right)^{d-d^{\prime}} \frac{h\left(\left\lceil s_{i} q^{\left.\alpha_{i}\right\rceil / q^{\alpha_{i}}}\right)\right.}{\left(\left\lceil s_{i} q^{\alpha_{i}}\right\rceil / q^{\alpha_{i}}\right)^{d-d^{\prime}}}
\end{gathered}
$$

Let $i \rightarrow \infty$, then $s_{i} \rightarrow 0, \alpha_{i} \rightarrow \infty$. Since $\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor,\left\lceil s_{i} q^{\alpha_{i}}\right\rceil$ lies in $\left[p^{n_{0}-1}, p^{n_{0}}\right]$, so there are only finitely many possible values of $\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor,\left\lceil s_{i} q^{\alpha_{i}}\right\rceil$. So by Theorem 8.10,

$$
\lim _{i \rightarrow \infty} \frac{h\left(\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor / q^{\alpha_{i}}\right)}{\left(\left\lfloor s_{i} q^{\alpha_{i}}\right\rfloor / q^{\alpha_{i}}\right)^{d-d^{\prime}}}=\lim _{i \rightarrow \infty} \frac{h\left(\left\lceil s_{i} q^{\alpha_{i}}\right\rceil / q^{\alpha_{i}}\right)}{\left(\left\lceil s_{i} q^{\alpha_{i}}\right\rceil / q^{\alpha_{i}}\right)^{d-d^{\prime}}}=c
$$

This means

$$
\left(\frac{p^{n_{0}-1}}{p^{n_{0}-1}+1}\right)^{d-d^{\prime}} c \leq \lim _{i \rightarrow \infty} h\left(s_{i}\right) / s_{i}^{d-d^{\prime}} \leq\left(\frac{p^{n_{0}-1}}{p^{n_{0}-1}-1}\right)^{d-d^{\prime}} c .
$$

Since this is true for arbitrary n_{0}, we get

$$
\lim _{i \rightarrow \infty} h\left(s_{i}\right) / s_{i}^{d-d^{\prime}}=c
$$

This finishes the proof of (1).
(2) follows from (1).
(3) Since R is a domain and $I \neq 0, d^{\prime}=\operatorname{dim} R / I<\operatorname{dim} R=d, d-d^{\prime} \geq 1$. So the order of $h(s)$ at 0 is at least 1 ; in particular, $\lim _{s \rightarrow 0^{+}} h(s)=0=h(0)$.

Lemma 8.12. Let (R, \mathfrak{m}) be a noetherian local domain, I, J be two R-ideal such that $I+J$ is \mathfrak{m}-primary. Then $h_{R, I, J}(s)$ is continuous at 0 if and only if $I \neq 0$.

Proof. If $I \neq 0$ then by previous theorem it is continuous at 0 . If $I=0$, then $h_{R}(s)=$ $e_{H K}(J, R) \neq 0=h_{R}(0)$ for $s>0$, so it is discontinuous at 0 .
Theorem 8.13. Let (R, \mathfrak{m}) be a noetherian local ring, I, J be two R-ideals such that $I+J$ is \mathfrak{m}-primary, M be a finitely generated R-module. Then $h_{M, I, J}(s)$ is continuous at 0 if and only if $I \nsubseteq P$ for any $P \in \operatorname{Supp}(M)$ with $\operatorname{dim} R / P=\operatorname{dim} M$. In particular, $h_{R, I, J}(s)$ is continuous at 0 if and only if $\operatorname{dim} R>\operatorname{dim} R / I$. If h_{M} is discontinuous at 0 then we have

$$
\lim _{s \rightarrow 0^{+}} h_{M}(s)=\sum_{P \in \operatorname{Supp}(M), I \subset P, \operatorname{dim} R / P=\operatorname{dim} M} l_{R_{P}}\left(M_{P}\right) e_{H K}(J, R / P) .
$$

Proof. By the associativity formula for h-function in Corollary 7.6,

$$
h_{M}(s)=\sum_{P \in \operatorname{Supp}(M), \operatorname{dim} R / P=\operatorname{dim} M} l_{R_{P}}\left(M_{P}\right) h_{R / P}(s) .
$$

For any $P \in \operatorname{Supp}(M), \lim _{s \rightarrow 0+} h_{R / P, I, J}(s)$ is always non-negative; the limit is positive if and only if $I \subseteq P$, in which case the limit is $e_{H K}(J, R / P)$; see Lemma 8.12. Thus taking limit as s approaches zero from the right, we get the expression of the right hand limit of h_{M}. Since h_{M} is continuous at 0 if and only if $\lim _{s \rightarrow 0^{+}} h_{R / P}(s)=0$ for any $P \in \operatorname{Supp}(M)$ with $\operatorname{dim} R / P=\operatorname{dim} M$, the continuity of h_{M} at zero is equivalent to asking $I \nsubseteq P$ for any $P \in \operatorname{Supp}(M)$ with $\operatorname{dim} R / P=\operatorname{dim} M$. If $M=R$, then this means $I \nsubseteq P$ for any $P \in \operatorname{Assh}(R)$ which means $\operatorname{dim} R>\operatorname{dim} R / I$.

9. Questions

Inspired by Trivedi's question [Tri21, Question 2], we ask
Question 9.1. Let I, J be \mathfrak{m}-primary ideals of a noetherian local ring R. Is $h_{R, I, J}$ a piecewise polynomial? In other words, does there exists a countable subset S of \mathbb{R} and a covering $\mathbb{R} \backslash S=\coprod_{n \in \mathbb{N}}\left(a_{n}, b_{n}\right)$ such that on each $\left(a_{n}, b_{n}\right), h_{R, I, J}$ is given by a polynomial function?

We point out that, in the context of the question, $h_{R, I, J}(s)$ is $e_{H K}(J, R)$ for large s, $e(I, R) s^{\operatorname{dim}(R)} / \operatorname{dim}(R)$! on some interval ($\left.0, a\right]$ and zero for s nonpositive.

10. Acknowledgements

The first author was supported in part by NSF-FRG grant DMS-1952366. The second author thanks support of NSF DMS \# 1952399 and \# 2101075. We thank Linquan Ma for supporting our collaboration.

References

[AE08] Ian M. Aberbach and Florian Enescu. "Lower bounds for Hilbert-Kunz multiplicities in local rings of fixed dimension". In: vol. 57. Special volume in honor of Melvin Hochster. 2008, pp. 1-16.
[AL03] Ian M. Aberbach and Graham J. Leuschke. "The F-signature and strong F-regularity". In: Math. Res. Lett. 10.1 (2003), pp. 51-56. ISSN: 1073-2780. DOI: 10.4310/MRL.2003.v10.n1.a6. URL: https://doi.org/10.4310/ MRL.2003.v10.n1.a6.
[Ahl79] Lars V. Ahlfors. Complex Analysis. third. McGraw-Hill Book Company, 1979.
[BST13] Manuel Blickle, Karl Schwede, and Kevin Tucker. " F-signature of pairs: continuity, p-fractals and minimal log discrepancies". In: J. Lond. Math. Soc. (2) 87.3 (2013), pp. 802-818. ISSN: 0024-6107,1469-7750. DOI: 10.1112/ jlms/jds070. URL: https://doi.org/10.1112/jlms/jds070.
[BS15] Mats Boij and Gregory G. Smith. "Cones of Hilbert functions". In: Int. Math. Res. Not. IMRN 20 (2015), pp. 10314-10338. ISSN: 1073-7928,16870247. DOI: 10.1093/imrn/rnu265. URL: https://doi.org/10.1093/imrn/ rnu265.
[Bre07] Holger Brenner. "The Hilbert-Kunz Function in Graded Dimension Two". In: Communications in Algebra 35.10 (2007), pp. 3199-3213. URL: https: //doi.org/10.1080/00914030701410203.
[CST18] Javier Carvajal-Rojas, Karl Schwede, and Kevin Tucker. "Fundamental groups of F-regular singularities via F-signature". In: Ann. Sci. Éc. Norm. Supér. (4) 51.4 (2018), pp. 993-1016. ISSN: 0012-9593,1873-2151. DOI: 10.24033/ asens.2370. URL: https://doi.org/10.24033/asens. 2370.
[DNP18] Alessandro De Stefani, Luis Núñez-Betancourt, and Felipe Pérez. "On the existence of F-thresholds and related limits". In: Transactions of the American Mathematical Society 370.9 (2018), pp. 6629-6650.
[FW89] Richard Fedder and Kei-ichi Watanabe. "A characterization of F-regularity in terms of F-purity". In: Commutative Algebra: Proceedings of a Microprogram Held June 15-July 2, 1987. Springer. 1989, pp. 227-245.
[HW02] Nobuo Hara and Kei-Ichi Watanabe. "F-regular and F-pure rings vs. log terminal and log canonical singularities". In: J. Algebraic Geom. 11.2 (2002), pp. 363-392. ISSN: 1056-3911,1534-7486. DOI: $10.1090 /$ S1056-3911-01-00306-X. URL: https://doi.org/10.1090/S1056-3911-01-00306-X.
[HJ18] Daniel J Hernández and Jack Jeffries. "Local Okounkov bodies and limits in prime characteristic". In: Mathematische Annalen 372 (2018), pp. 139-178.
[HH90] Melvin Hochster and Craig Huneke. "Tight Closure, Invariant Theory, and the Briancon-Skoda Theorem". In: Journal of the American Mathematical Society 3.1 (1990), pp. 31-116. URL: https://www.jstor.org/stable/ 1990984.
[Hun13] Craig Huneke. "Hilbert-Kunz Multiplicity and the F-Signature". In: Commutative Algebra: Expository Papers Dedicated to David Eisenbud on the Occasion of His 65th Birthday. Ed. by Irena Peeva. Springer, 2013, pp. 485525. URL: https://arxiv.org/abs/1409. 0467.
[HMM04] Craig Huneke, Moira McDermott, and Paul Monsky. "Hilbert-Kunz functions for normal rings". In: Math. Res. Letters 11.4 (2004), pp. 539-546. DOI: DOI:https://dx.doi.org/10.4310/MRL.2004.v11.n4.a11.
[Hun+08a] Craig Huneke et al. "F-thresholds, tight closure, integral closure, and multiplicity bounds". In: Michigan Mathematical Journal 57 (2008), pp. 463483.
[Hun+08b] Craig Huneke et al. Special volume in honor of Melvin Hochster. Michigan Math. J. 57 (2008). University of Michigan, Ann Arbor, MI, 2008, i-x and 1-755.
[Kos17] OHTA Kosuke. "A function determined by a hypersurface of positive characteristic". In: Tokyo Journal of Mathematics 40.2 (2017), pp. 495-515.
[Kun69] Ernst Kunz. "Characterizations of regular local rings for characteristic p". In: Amer. J. Math 91 (1969), pp. 772-784. Doi: https://doi.org/10. 2307/2373351.
[Kun76] Ernst Kunz. "On Noetherian Rings of Characteristic p". In: American Journal of Mathematics 98.4 (1976), pp. 999-1013. ISSN: 00029327, 10806377. URL: http://www.jstor.org/stable/2374038 (visited on 09/28/2023).
[Man04] Florian Enescu Manuel Blickle. "On rings with small Hilbert-Kunz multiplicity". In: Proc. of the Amer. Math. Soc. 132 (2004), pp. 2505-2509. Doi: https://doi.org/10.1090/S0002-9939-04-07469-6.
[Mon83] Paul Monsky. "The Hilbert-Kunz Function". In: Math. Ann. 263 (1 1983), pp. 43-49. DOI: https://doi.org/10.1007/BF01457082.
[Muk22] Alapan Mukhopadhyay. Frobenius-Poincaré function and Hilbert-Kunz multiplicity. 2022. arXiv: 2201.02717 [math.AC].
[Muk23] Alapan Mukhopadhyay. "The Frobenius-Poincaré Function and Hilbert-Kunz Multiplicity". Available at https://dx.doi.org/10.7302/8449. PhD thesis. Ann Arbor, MI: University of Michigan, Aug. 2023.
[MTW04] Mircea Mustata, Shunsuke Takagi, and Kei-ichi Watanabe. "F-thresholds and Bernstein-Sato polynomials". In: arXiv preprint math/0411170 (2004).
[MTW05] Mircea Mustaţă, Shunsuke Takagi, and Kei-ichi Watanabe. "F-thresholds and Bernstein-Sato polynomials". In: European Congress of Mathematics. Eur. Math. Soc., Zürich, 2005, pp. 341-364. ISBN: 3-03719-009-4.
[NP06] Constantin Niculescu and Lars-Erik Persson. Convex functions and their applications. Vol. 23. Springer, 2006.
[PT18] Thomas Polstra and Kevin Tucker. " F-signature and Hilbert-Kunz multiplicity: a combined approach and comparison". In: Algebra Number Theory
12.1 (2018), pp. 61-97. ISSN: 1937-0652. DOI: 10.2140/ant.2018.12.61. URL: https://doi.org/10.2140/ant.2018.12.61.
[Smi97] Karen E. Smith. " F-rational rings have rational singularities". In: Amer. J. Math. 119.1 (1997), pp. 159-180. ISSN: 0002-9327,1080-6377. URL: http: //muse.jhu.edu/journals/american_journal_of_mathematics/v119/ 119.1smith.pdf.
[Sta23] The Stacks project authors. The Stacks project. https://stacks.math . columbia.edu. 2023.
[TW04] Shunsuke Takagi and Kei-ichi Watanabe. "On F-pure thresholds". In: Journal of Algebra 282.1 (2004), pp. 278-297. ISSN: 0021-8693. DOI: https : //doi.org/10.1016/j.jalgebra.2004.07.011. URL: https://www. sciencedirect.com/science/article/pii/S0021869304003850.
[Tay18] William D. Taylor. "Interpolating between Hilbert-Samuel and Hilbert-Kunz multiplicity". In: J. Algebra 509 (2018), pp. 212-239. ISSN: 0021-8693,1090266X. DOI: $10.1016 / \mathrm{j}$.jalgebra.2018.05.015. URL: https://doi.org/ 10.1016/j.jalgebra.2018.05.015.
[Tri18] V. Trivedi. "Hilbert-Kunz Density Function and Hilbert-Kunz Multiplicity". In: Transactions of the American Mathematical Society 370.12 (2018), pp. 8403-8428. DOI: https://doi.org/10.1090/tran/7268.
[Tri05] Vijaylaxmi Trivedi. "Semistability and Hilbert-Kunz multiplicities for curves". In: Journal of Algebra 284 (2005), pp. 627-644.
[Tri21] Vijaylaxmi Trivedi. "The Hilbert-Kunz density functions of quadric hypersurfaces". In: (2021). URL: arXiv:2109.11784v1.
[Tri23] Vijaylaxmi Trivedi. "The Hilbert-Kunz density functions of quadric hypersurfaces". In: Advances in Mathematics 430 (2023), p. 109207. ISSN: 00018708. DOI: https://doi.org/10.1016/j.aim.2023.109207. URL: https: //www.sciencedirect.com/science/article/pii/S000187082300350X.
[Tri19] Vijaylaxmi Trivedi. "Toward Hilbert-Kunz density functions in characteristic 0". In: Nagoya Math. J. 235 (2019), pp. 158-200. ISSN: 0027-7630,2152-6842. DOI: 10.1017/nmj.2018.7. URL: https://doi.org/10.1017/nmj.2018.7.
[TW22] Vijaylaxmi Trivedi and Kei-Ichi Watanabe. "Hilbert-Kunz density function for graded domains". In: J. Pure Appl. Algebra 226.2 (2022), Paper No. 106835, 28. ISSN: 0022-4049,1873-1376. DOI: 10.1016/j.jpaa.2021.106835. URL: https://doi.org/10.1016/j.jpaa.2021.106835.
[TW21] Vijaylaxmi Trivedi and Kei-Ichi Watanabe. "Hilbert-Kunz density functions and F-thresholds". In: Journal of Algebra 567 (2021), pp. 533-563. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2020.09.025.
[Tuc12] Kevin Tucker. " F-signature exists". In: Invent. Math. 190.3 (2012), pp. 743765. ISSN: 0020-9910,1432-1297. DOI: $10.1007 / \mathrm{s} 00222-012-0389-0$. URL: https://doi.org/10.1007/s00222-012-0389-0.

150 N. University Street West Lafayette, IN 47907-2067, United States
Email address: cheng319@purdue.edu
Institute of Mathematics, CAG, EPFL SB MATH MA A2 383 (BÂtiment MA), Station 8, CH-1015 Lausanne, Switzerland

Email address: alapan.mathematics@gmail.com

[^0]: ${ }^{1}$ Note the difference in notation from [Muk22].

[^1]: ${ }^{2}$ In particular C can be chosen independent of the specific choice of J_{\bullet}

[^2]: ${ }^{3} h_{M, I, J}$. exists in the context of (A) or (B)

[^3]: ${ }^{4}$ i.e. the minimal primes of \hat{R} have the same dimension

[^4]: ${ }^{5}$ see [FW89], [Smi97]

