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Abstract. Given ideals I, J of a noetherian local ring (R,m) such that I + J is m-
primary and a finitely generated module M , we associate an invariant of (M,R, I, J)
called the h-function. Our results on h-function allow extensions of the theories of
Frobenius-Poincaré functions and Hilbert-Kunz density functions from the known graded
case to the local case, answering a question of Trivedi. When J is m-primary, we
describe the support of the corresponding density function in terms of other invariants
of (R, I, J). We show that the support captures the F -threshold: cJ(I), under mild
assumptions, extending results of Trivedi and Watanabe. The h-function treats Hilbert-
Samuel, Hilbert-Kunz multiplicity and F -threshold on an equal footing. We develop
the theory of h-functions in a more general setting which yields a density function for
F -signature. A key to many results on h-function is a ‘convexity technique’ that we
introduce, which in particular proves differentiability of Hilbert-Kunz density function
almost everywhere, thus contributing to another question of Trivedi.

1. Introduction

Hilbert-Kunz multiplicity and F -signature are numerical invariants appearing in prime
characteristics commutative algebra and algebraic geometry. These quantify severity of
singularities at a point of a variety and also relate to other invariants, such as the cardi-
nality of the local fundamental group of the punctured spectrum of a strongly F -regular
local ring; see [AE08], [CST18] and Section 2. The theory of Hilbert-Kunz multiplicity in
the graded case has witnessed two new generalizations in recent years: the Hilbert-Kunz
density function and the Frobenius-Poincaré function. Fix a standard graded ring S in
prime characteristics and a homogeneous ideal a of finite co-length. When the Krull
dimension dim(S) is at least two, Trivedi has proven the existence of a compactly sup-
ported real valued continuous function gS,a of a real variable- called the Hilbert-Kunz
density function- whose integral is the Hilbert-Kunz multiplicity eHK(a, S); see Section 2
for details. For the pair (S, a), where dim(S) is not necessarily at least two, the associated
Frobenius-Poincaré function is an entire function in one complex variable, whose value at
the origin is the Hilbert-Kunz multiplicity eHK(a, S); see Section 2. These two functions
not only encode more subtle invariants of (S, a) than the Hilbert-Kunz multiplicity but
also allow application of geometric tools, such as sheaf cohomology on Proj(S), and tools
from homological algebra. Successful applications of the Hilbert-Kunz density functions
have resolved Watanabe and Yoshida’s conjecture on the values of Hilbert-Kunz multiplic-
ity of quadric hypersurfaces, rationality of Hilbert-Kunz multiplicities and F -thresholds
of two dimensional normal rings among other results; see [Tri21], [TW21], [Tri05], [Tri19].

Building extensions of these two theories to the setting of a noetherian local ring is a
natural question; see Trivedi’s question [Tri18, Question 1.3]. In this article, we extend
the theories of Hilbert-Kunz density function and Frobenius-Poincaré function to the lo-
cal setting. Our extensions are facilitated by a systematic study of a new function, which
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we call the h-function.

Fix a noetherian local domain (R,m) of prime characteristic p > 0 and Krull dimension
d, where the Frobenius endomorphism is a finite map. Fix two ideals I, J of R such that
I + J is m-primary. We prove:

Theorem A: Consider the sequence of functions of a real variable

hn,I,J(s) = l(
R

(I⌈spn⌉ + J [pn])R
),

where J [pn] is the ideal generated by {fpn | f ∈ J}; and l( ) is the length function.

(1) (Theorem 3.7, Theorem 3.30) There is a real-valued function of a real variable
denoted by hI,J(s) such that given an interval [s1, s2] ⊆ R, there is a constant C
depending only on s1, s2 satisfying

|hI,J(s)−
hn,I,J(s)

pnd
| ≤ C

pn
, for all s ∈ [s1, s2] andn ∈ N.

Consequently, the sequence of functions
hn,I,J (s)

pnd converges to hI,J(s) and the con-

vergence is uniform on every compact subset of R.
(2) (Theorem 3.31, Theorem 3.20) Given real numbers s2 > s1 > 0, there is a constant

C ′- depending only on s1, s2 such that for x, y ∈ [s1, s2],

|hI,J(x)− hI,J(y)| ≤ C|x− y|.
That is, away from zero, hI,J is locally Lipschitz continuous.

The function hI,J is called the h-function associated to the pair (I, J). In fact we prove a

version the above theorem for an ideal I and a family of ideals J• satisfying what we call
Condition C allowing for applications to other numerical invariants such as F -signature;
Theorem 3.7.

Special instances of this h-function have been considered by different authors: in
[Tay18] when both I and J are m-primary, in [BST13] when R is regular, I is prin-
cipal and J = m to study F -signature of a pair and in [Kos17] in the same set up but
in a different context. Theorem A generalizes their results. Moreover the techniques
involved in our proofs yield uniform convergence which is crucial for us.

In Theorem 3.16, we prove that there is a polynomial P1(s) of degree dim(R/J) such
that hI,J(s) ≤ P1(s) for all s. Using this polynomial bound we prove existence and holo-
morphicity of a function FR,I,J(y) on the open lower half complex plane; see Theorem 4.3.
We moreover show:

FR,I,J(y) =

∫
R

hI,J(t)e
−ity(iy)dt.

When J is m-primary, we prove FR,I,J(y) is entire. When (R,m, J) comes from a graded
pair (S, a), i.e. (R,m) is the localization of a standard graded ring S at the homogeneous
maximal ideal, I is the homogeneous maximal ideal and J comes from a homogeneous
ideal of finite colength a, FR,I,J(y) coincides with the Frobenius-Poincaré function of the
pair (S, a); see Proposition 6.8,(3). Unlike [Muk22], our treatment allows us to consider
Frobenius-Poincaré function of (S, a), where a need not have finite colength; see Propo-
sition 6.8, (2).
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Extending the theory of Hilbert-Kunz density functions is more involved. Set

fn(s) = hn,I,J(s+
1

pn
)− hn(s).

When (R,m, J) comes from a graded pair (S, a), where dim(S) ≥ 2, we point out that
the sequence of functions

fn(s)

(pn)d−1

converges uniformly to the Hilbert-Kunz density function of (S, a); see Theorem 6.6. But
for arbitrary ideals I, J of a local ring (R,m), the pointwise convergence of , fn(s)/(p

n)d−1

at every s is not clear; in fact when I = 0 the sequence does not converge,see Exam-
ple 5.11. In this direction, we relate the convergence of fn(s)/(p

n)d−1 to the differentia-
bility of hI,J at s. We prove,

If hI,J(s) if differentiable at s, fn(s)/(p
n)d−1 converges to h′I,J(s); see Theorem 5.8

In the direction of differentiability of h, we prove:

Theorem B:(Theorem 5.4,(3),(4)) Let hI,J be as before

(1) The left and right hand derivative of h exist at all non-zero points.
(2) Outside a countable subset of R, h is differentiable; if h is differentiable on an

open interval, then it is continuously differentiable on the same interval.

Thm B, (2) implies that for any I, J in the local setting, fn(s)/(p
n)d−1 converges out-

side a countable subset of R and coincides with the derivative of hI,J(s); thus outside this
countable set the limiting function fn(s)/(p

n)d−1 yields a well-defined notion of density
function. In Theorem 5.4, we actually prove existence of density function more generally
for a family satisfying Condition C. This generalization in particular yields a density
function for F -signature. When (R,m) comes from a graded pair (S, a) with dim(S) ≥ 2,
we prove that the corresponding h-function is continuously differentiable and the deriva-
tive coincides with the Hilbert-Kunz density function that Trivedi defines. We moreover
prove the existence and continuity of the density function to the case when a does not
have finite colength; see Theorem 6.7. Our work shows that h-function is twice differen-
tiable outside a set of measure zero contributing to Trivedi’s question about the order of
differentiability of the Hilbert-Kunz density function; see [Tri23, Question 1], Remark 5.5.

Thm B is a consequence of a ‘convexity technique’ that we introduce. For fixed s0 > 0,
in Theorem 5.3, we construct a function H(s, s0) which we prove to be convex and show
that

H(s, s0) = h(s)/c(s)− h(s0)/c(s0) +

∫ s

s0

h(t)c′(t)/c2(t)dt,

where c(s) = sµ−1/(µ − 1)!, µ being the cardinality of a set of generators of I. Thm B
then follows from general properties of convex functions. The underlying idea of the same
convexity argument is used to prove Lipschitz continuity of h-functions stated in Thm A.

The behaviour of hI,J near zero is more subtle. We prove hI,J is continuous at zero if
and only if I is non-zero. In fact our result implies,
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Theorem C:(Theorem 8.11) Suppose dim(R/I) = d′. Denote the set of minimal primes
of R/I of dimension d′ by Assh(R/I). Then

lim
s→0+

h(s)

sd−d′
=

1

(d− d′)!

∑
P∈Assh(R/I)

eHK(J,R/P )e(I, RP ),

where e(I, ) denotes the Hilbert-Samuel multiplicity with respect to I. In particular,
the order of vanishing h(s) at s = 0 is d− d′. Thm C extends part of [BST13, Thm 4.6],

where R is assumed to be regular, I a principal ideal and J = m. The h-function treats
different numerical invariants of (R, I, J) on an equal footing. When J is m-primary,
for large s, hI,J(s) = eHK(R, J); when I is m-primary, for s > 0 and close to zero

hI,J(s) = e(I, R) s
d

d!
; see [Tay18, Lemma 3.3]. Moreover,

Theorem D:(Theorem 8.6)Suppose J is m-primary, R is reduced and formally equidi-
mensional (e.g. (R,m) is a complete domain or localization of a graded domain). Let
αR,I,J = sup{s ∈ R | s > 0 , hI,J(s) ̸= eHK(J,R)}. Consider the sequence of numbers,

rJI (n) = max{t ∈ N|I t ⊈ (J [pn])∗},

where (J [pn])∗ denotes the tight closure of the ideal (J [pn]); see Definition 2.5. Then

lim
n→∞

rJI (n)

pn
= αR,I,J .

We prove, under suitable hypothesis, for e.g. strong F -regularity at every point of
Spec(R) − {m}, rJI (n)/pn in fact converges to the F -threshold cJ(I); see Theorem 8.9.
F -threshold is an invariant extensively studied in prime characteristic singularity theory;
see [Hun+08b], [MTW05] and is closely related log canonical threshold via reduction
modulo p; see [TW04], [HW02]. Whenever hI,J is differentiable, the support of d

ds
hI,J ,

which agress with the Hilbert-Kunz density function of (R, I, J), is [0, αR,I,J ]. This gen-
eralizes Trivedi and Watanabe’s description of the support Hilbert-Kunz density function
which was made when R is strongly F -regular and graded; see Remark 8.8, [TW21, Thm
4.9].

Notation and conventions: All rings are commutative and noetherian. The symbol
p denotes a positive prime number. Unless otherwise said, the pair (R,m) denotes a
noetherian local ring R- not necessarily a domain- with maximal ideal m. By saying
(R,m) is graded, we mean R is a standard graded ring with homogeneous maximal ideal
m. When (R,m) is assumed to be graded, R-modules and ideals are always assumed to
be Z-graded. We assume R has characteristic p and R is F -finite, i.e. the Frobenius
endomorphism of R is finite. We index the sequences of numbers and functions by n.
Whenever the letter q appears in such a sequence, q denotes pn. For an ideal I ⊂ R, I [p

n]

or I [q] denotes the ideal generated by {f q | f ∈ I} and is called the q or pn-th Frobenius
power of I. The operator lR( ) or simply l( ) denotes the length function. For an
R-module M , F n

∗ M denotes the R-module whose underlying abelian group is M , but
the R-action comes from restriction scalars through the iterated Frobenius morphism
F n : R → R.

2. Background material

Let (R,m) be a noetherian local or graded ring, J be an m-primary ideal, M be a
finitely generated R-module. Although the germ of Hilbert-Kunz multiplicity was present
in Kunz’s seminal work [Kun69], its existence was not proven until Monsky’s work:



h-FUNCTION, HILBERT-KUNZ DENSITY FUNCTION AND FROBENIUS-POINCARÉ FUNCTION 5

Theorem 2.1. (see [Mon83]) There is a real number denoted by eHK(J,M) such that,

l(
M

J [pn]M
) = eHK(J,M)(pn)dim(M) +O((pn)dim(M)−1).

The number eHK(J,M) is called the Hilbert-Kunz multiplicity of M with respect to J .

Smaller values of eHK(R,m) predicts milder singularity of (R,m); see for e.g. [AE08,
Cor 3.6], [Man04]. It is imperative to consider Hilbert-Kunz multiplicity with respect to
arbitrary ideals, for e.g. to realize F -signature (see Example 3.10)- an invariant charac-
terizing strong F -regularity of (R,m)- in terms of Hilbert-Kunz multiplicity; see [PT18,
Cor 6.5]. We refer the readers to [Hun13], [Muk23, Chapter 2] and the references there
in for surveying the state of art.

When (R,m) is graded, Trivedi’s Hilbert-Kunz density function refines the notion of
Hilbert-Kunz multiplicity:

Theorem 2.2. (see [Tri18]) Let (R,m) be graded, J be a finite co-length homogeneous
ideal, M be a finitely generated Z-graded R-module. Consider the sequence of functions
of a real variable s,

g̃n,M,J(s) = l([
M

J [q]M
]⌊sq⌋).

(1) There is a compact subset of R containing the supports of all g̃n’s.
(2) When dim(M) ≥ 1, there is a function-denoted by g̃M,J- such that (

1
q
)dimM−1g̃n,M,J(s)

converges pointwise to g̃M,J(s) for all s ∈ R.
(3) When dim(M) ≥ 2, the above convergence is uniform and g̃M,J is continuous.
(4)

eHK(J,M) =

∞∫
0

g̃M,J(s)ds.

Definition 2.3. The function g̃M,J is called the Hilbert-Kunz density function of (N, J).

For a graded ring (R,m), the Frobenius-Poincaré function produces another refinement
of the Hilbert-Kunz multiplicity. Frobenius-Poincaré functions are essentialy a limiting
function of the Hilbert series of M

J [q]M
in the variable e−iy, see [Muk22, Rmk 3.6].

Theorem 2.4. (see [Muk22]) Let M be a finitely generated Z-graded module over a
graded (R,m), J be a finite colength homogeneous ideal. Consider the sequence of entire
functions on C

Gn,M,J(y) = (
1

q
)dim(M)l([

M

J [q]M
]j)e

−iyj/q.

(1) The sequence of functions Gn,M,J(y) converges to an entire function GM,J(y)
1 on

C. The convergence is uniform on every compact subset of C.
(2)

GM,J(0) = eHK(J,M).

The last theorem holds for any graded ring which are not necessarily standard graded.
For the notion of Hilbert-Kunz density function in the non-standard graded setting, see
[TW22]. By [Muk23, Thm 8.3.2], for a standard graded (R,m) of Krull dimension at
least one, the holomorphic Fourier transform of g̃M,J is GM,J , i.e.

GM,J(y) =

∞∫
0

g̃M,J(s)e
−iysds.

1Note the difference in notation from [Muk22].
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Thus when dim(M) is at least two, the Hilbert-Kunz density function and the Frobenius-
Poincaré function determine each other; see [Muk23, Rmk 8.2.4]. Both Hilbert-Kunz
density function and Frobenius-Poincaré function capture more subtle graded invariants
of (M,J) than the Hilbert-Kunz multiplicity. For e.g. when R is two dimensional, normal,
J is generated by forms of the same degree, g̃R,J and GR,J determine and are determined
by slopes and ranks of factors in the Harder-Narasimhan filtration of a syzygy bundle
associated to J on Proj(R); see [Tri05], [Bre07], [Tri18, Example 3.3], [Muk22, Chap 6].
For other results on Hilbert-Kunz density functions and Frobenius-Poincaré functions, see
the reference section of [Muk23]. These two functions and the Hilbert-Kunz multiplicity
of (R, J) detects J up to its tight closure. Recall:

Definition 2.5. ([HH90, Def 3.1]) Let A be a ring of characteristic p > 0. We say x ∈ A
is in the tight closure of an ideal I if there is a c not in any minimal primes of A such
that cxp

n ∈ I [p
n] for all large n. The elements in the tight closure of I form an ideal;

denoted I∗.

Theorem 2.6. Let I ⊆ J be two ideals in (R,m).

(1) If I∗ = J∗, eHK(I, R) = eHK(J,R).
(2) Conversely, when R is formally equidimensional, i.e. all the minimal primes

of the completion R̂ have the same dimension, eHK(I, R) = eHK(J,R) implies
I∗ = J∗. When (R,m) is a graded ring where all the minimal primes have the
same dimension, g̃I,R = g̃J,R or GI,R = GJ,R implies I∗ = J∗.

3. h-function

Given ideals I, J of a local ring (R,m) such that I + J is m-primary and a finitely
generated R-module M , we assign a real-valued function hM,I,J of a real variable, which
we refer to as the corresponding h-function. The existence and continuity of hM,I,J is
proven in Section 3.4. When R is additionally a domain andM = R, given an ideal I and
a family of ideals {Jn}n∈N- satisfying what we call Condition C below- in Section 3.1,
we associate a corresponding h-function which is continuous on R>0.

3.1. h-functions of a domain.

Definition 3.1. Let {In}n∈N be a family of ideals of the F -finite local ring R.

(1) I• is called a weak p-family if there exists c ∈ R- not contained in any minimal

primes of maximal dimension of R such that cI
[p]
n ∈ In+1.

(2) I• is called a weak p−1-family if exists a nonzero ϕ ∈ HomR(F∗R,R) such that
ϕ(F∗In+1) ⊂ In.

(3) A big p-family (resp. big p−1 family) is a weak p (resp. p−1)-family I• such that
there is an α ∈ N for which m[pn+α] ⊆ In for all n.

A family of ideals where (1) holds with c = 1 and m[pn] ⊆ In, has been called a p-family
of ideals; see [HJ18]. Notions of p and p−1 families provide an abstract framework for
proving existence of asymptotic numerical invariants:

Theorem 3.2. (see [PT18, Theorem 4.3]) Let (R,m, k) be an F -finite local domain of
dimension d, {In}n∈N a sequence of ideals such that m[pn] ⊂ Ie for all n ∈ N.

(1) If there exists a nonzero c ∈ R such that cI
[p]
n ⊂ In+1 for all n ∈ N, then

η = lime→∞ 1/pndlR(R/In) exists, and there exists a positive constant C that only
depends on c such that η − 1/pndlR(R/In) ≤ C/pn for all n ∈ N.
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(2) If there exists a non-zero ϕ ∈ HomR(F∗R,R) such that ϕ(F∗In+1) ⊂ In for all
e ∈ N, then η = limn→∞ 1/pndlR(R/In) exists, and there exists a positive constant
C that only depends on ϕ such that 1/pndlR(R/In)− η ≤ C/pn for all n ∈ N.

(3) If the conditions in (1) and (2) are both satisfied then there exists a constant C
that only depends on c and ϕ such that |1/pndlR(R/In)− η|≤ C/pn.

Lemma 3.3. Let (R,m) be a local domain. Let In, Jn be two weak p-families, then so
is the family In + Jn. If In, Jn are two weak p−1-families, then so is the family In + Jn.
When one of the families are big (p or p−1), then so is their sum.

Proof. Suppose there are nonzero elements c1, c2 such that c1I
[p]
n ⊂ In+1 and c2J

[p]
n ⊂

Jn+1, then c = c1c2 is still nonzero and satisfies cI
[p]
n ⊂ In+1, cJ

[p]
n ⊂ Jn+1. So c(In +

Jn)
[p] ⊂ In+1 + Jn+1. If there are non-zero elements ϕ1, ϕ2 ∈ HomR(F∗R,R), such that

ϕ1(F∗In+1) ⊂ In and ϕ2(F∗Jn+1) ⊂ Jn. For ϕ ∈ HomR(F∗R,R) and r ∈ R, define
rϕ ∈ HomR(F∗R,R) by the formula rϕ(s) = ϕ(rs). This puts an R-module structure
on HomR(F∗R,R), which turns out to be a torsion free module of rank one. So the
R-submodules of HomR(F∗R,R) generated by ϕ1 and ϕ2 has a nonzero intersection, or
in other words, there exist nonzero c1, c2 ∈ R and a nonzero element ϕ ∈ HomR(F∗R,R)
such that ϕ = ϕ1(F∗(c1·)) = ϕ2(F∗(c2·)). Thus, ϕ(F∗In+1) ⊂ In and ϕ(F∗Jn+1) ⊂ Jn. So
ϕ(F∗(In+1 + Jn+1)) ⊂ In + Jn.

To prove the ‘big’ness, assume that there is an α such that m[pn+α] ⊆ In. Then we have
m[pn+α] ⊆ In + Jn. □

Condition C: Let (R,m) be an F -finite local ring, I is an ideal and J• = {Jn}n∈N be a
family of ideals in R. We say I, J• satisfies Condition C if

(1) The family J• is weakly p and also weakly p−1.
(2) For each real number t, there is an α such that m[pα+n] ⊆ I⌈tq⌉ + Jn for all n.

Condition C provides the right framework where we can prove existence of h-functions;
see Theorem 3.7.

Definition 3.4. Let (R,m) be a local or graded ring. Let I be an ideal and J• = {Jn}n∈N
be a family of ideals in R- homogeneous when R is graded, such that I+Jn is m-primary
for all n. For a finitely generated R-module M (homogeneous when R is graded) and
s ∈ R, set

(1) hn,M,I,J•(s) = l( M
(I⌈sq⌉+Jn)M

).

(2) For an integer d, set

hn,M,I,J•,d(s) =
1

qd
l(

M

(I⌈sq⌉ + Jn)M
).

(3) We denote the limit of the sequence of numbers hn,M,I,J•,d(s), whenever it exists,
by hM,I,J•,d(s).

Whenever one or more of the parameters M, I, J• is clear from the context, we sup-
press those from hn,M,I,J•(s), hn,M,I,J•,d(s) or hM,I,J•,d(s). In the absence of an explicit
d, it should be understood that d = dim(M). When Jn = J [pn] for some ideal J ,
hn,M,I,J , hn,M,I,J,d, hM,I,J stand for hn,M,I,J• , hn,M,I,J•,d and hM,I,J•,d respectively.

Remark 3.5. (1) With the notational conventions and suppression of parameters declared
above, hn,M,I,J stands for both l( M

(I⌈sq⌉+Jn)M
) and 1

qdim(M) l(
M

(I⌈sq⌉+Jn)M
). But in the article,

it is always clear from the context what hn,M,I,J denotes. So we do not introduce further
conventions.
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(2) When (R,m) is graded, M, I and J• are homogeneous, hn,M,I,J = hn,Mm,IRm,Jm . So
once we prove statements involving hn’s in the local setting, the corresponding statements
in the graded setting follow.

The following comparison between ordinary powers and Frobenius powers is used
throughout this article:

Lemma 3.6. Let R be a ring of characteristic p > 0, J be an R-ideal generated by µ
elements, k ∈ N, and q = pn is a power of p. Then Jq(µ+k−1) ⊂ (J [q])k ⊂ Jqk.

Proof. The second containment is trivial. We prove the first containment. Let J =
(a1, ..., aµ), then Jq(µ+k−1) is generated by au11 ...a

uµ
µ where

∑
ui = q(µ + k − 1). Let

a = au11 ...a
uµ
µ , vi = ⌊ui/q⌋ and b = av11 ...a

vµ
µ , then since qvi ≤ ui, b

q divides a. Now
qvi ≥ ui − q + 1, so

∑
qvi ≥ q(µ + k − 1) + (−q + 1)µ = q(k − 1) + µ > q(k − 1), so∑

vi ≥ k. This means b ∈ Jk and a ∈ Jk[q] = J [q]k. □

Theorem 3.7. Let (R,m, k) be an F -finite local domain of dimension d. Let J• be a
family of ideals such that there is a non-zero c ∈ R and ϕ ∈ HomR(F∗R,R) satisfying

c.J
[p]
n ⊆ Jn+1 and ϕ(F∗Jn+1) ⊆ Jn. Let I be an ideal such that for each s ∈ R, there is an

integer α such that m[pn+α] ⊆ I⌈sq⌉ + Jn for all n. Set In(s) = I⌈sq⌉ + Jn.

(1) Fix t ∈ R. Choose α ∈ N such that m[pn+α] ⊆ I⌈tq⌉+Jn for all n. Then there
exists a positive constant C depending only on c, ϕ, I and α2 such that for any
s ∈ (−∞, t],

hR,I,J•,d(s) = lim
n→∞

1/pndlR(R/In(s)) exists, and

(3.1) |1/pndlR(R/In(s))− hR,I,J•,d(s)| ≤ C/pn for alln ∈ N.
(2) Given choices I, J• and t ∈ R, one can choose C depending only on t, such that

Equation (3.1) holds on [0, t].
(3) On every bounded subset of R, the sequence of functions hn,I,J•,d(s) converges

uniformly to hR,I,J•(s).

Proof. (1) When I = 0, In(s) = Jn, so everything follows from Theorem 3.2.

We assume I is non-zero for the rest of the proof. Note In(s)
[p] = I⌈sq⌉[p] + J

[p]
n ⊆

I⌈sq⌉p + J
[p]
n ⊆ I⌈spq⌉ + J

[p]
n as ⌈sq⌉p ≥ ⌈sqp⌉. So

(3.2) c.In(s)
[p] ⊆ In+1(s) .

Suppose I is generated by µ-many elements. Then

I⌈spq⌉ ⊆ I⌈sq⌉p−p ⊆ I [p](⌈sq⌉−µ); see Lemma 3.6.

Fix a non-zero r ∈ (Iµ)[p]. Then the last containment implies,

(3.3)
ϕ(F∗r.F∗In+1(s)) = ϕ(F∗(rI

⌈spq⌉))+ϕ(F∗(rJn+1)) ⊆ ϕ(F∗(I
⌈sq⌉[p]))+Jn ⊆ In(s) for all s ∈ R .

Equation (3.2) and Equation (3.3) imply that, for all s, the non-zero elements c ∈ R
and ϕ(F∗r. ) ∈ HomR(F∗R,R) endow In(s) with weakly p and p−1 family structures,
respectively. The ideal m[pn+α] is contained in In(t) and hence in In(s) for s ≤ t. The
rest follows by applying Theorem 3.2 to the family In+α(s) for every s ≤ t. The feasibil-
ity of choosing C depending only on c, ϕ, α and r also follows from Theorem 3.2. Since

r ∈ (Iµ)[p] can be chosen depending only on I, the choice of C depends only on c, ϕ, α

2In particular C can be chosen independent of the specific choice of J•.



h-FUNCTION, HILBERT-KUNZ DENSITY FUNCTION AND FROBENIUS-POINCARÉ FUNCTION 9

and I.

(2) Once I, Jn satisfying the hypothesis is given and t ∈ R is given, c, ϕ, α can be chosen
depending only on I, Jn, t.

(3) Every bounded subset of R is contained in some interval (−∞, t]. The dependence of
C only on I, Jn, t and t implies (3). □

The domain assumption is made in the above theorem just so that we can apply
Theorem 3.2.

Lemma 3.8. Suppose I and J• satisfy the hypothesis of Theorem 3.7. Suppose there is
an integer r such that Irp

n ⊆ Jn. Then hn,I,J•(s) and hI,J•,d are constant on [r,∞).

The next two propositions produce examples of an ideal I and ideal family J• satisfying
Condition C. For specific choices of J• and I, the corresponding corresponding functions
hI,J•,d encode widely studied invariants of a prime characteristic ring such as Hilbert-Kunz
multiplicity, F -signature, F -threshold. We do not assume R is a domain in the next two
examples.

Proposition 3.9. Let J• be a family of ideals which is a big p and also p−1 family. For
any ideal I, I, J• satisfy Condition C.

Proof. Since J• is big, there is an α such that m[pn+α] ⊆ Jn. Thus for every s ∈ R,
m[pn+α] ⊆ I⌈sq⌉ + Jn. □

When R is a domain, a big p,p−1 family J• thus produces an h-function. Thanks to
Lemma 3.8 such an hI,J• is eventually constant.

Example 3.10. Examples of J• which are both big p and also p−1 include Jn = J [pn],
where J is an m-primary ideal. Another example of interest is when Jn is the sequence
of ideals defining F -signature of (R,m) which we now recall. Set pα = [k : kp]. Take

Jn = {x ∈ R |ϕ(x) ∈ m, for allϕ ∈ HomR(F
n
∗ R,R)}.

Then pαnl(R/In) coincides with the free rank of F n
∗ R: the maximal rank of a free module

M such that there is an R-module surjection F n
∗ R → M ; see [Tuc12, Prop 4.5]. The

family Jn is both p and p−1; and Jn contains m[pn]. Thanks to Theorem 3.2, the limit

s(R) := lim
n→∞

(
1

q
)dim(R)l(

R

Jn
)

exist. The number s(R) measuring the asymptotic growth of the free rank of F n
∗ R is

called the F -signature of R. The ring (R,m) is strongly F -regular if and only if s(R) is
positive; see [AL03, Thm 0.2]. When R is a domain, for any nonzero ideal I, we have
hI,J•(s) whose value for large s is s(R). The continuity, left-right differentiability of such
hI,J• are consequences of Theorem 5.4.

The examples of h-functions produced by the result below are central to extending theories
of Frobenius-Poincaré and Hilbert-Kunz density functions to the local setting.

Proposition 3.11. For any pair of ideals I, J such that I + J is m-primary, the ideal I
and the family Jn = J [pn] satisfies Condition C.

Proof. Since I+J is m-primary, given a real number s, m[pα] ⊆ I⌈s⌉+J for some α. Then
m[pα+n] ⊆ (I⌈s⌉ + J)[p

n] ⊆ I⌈sq⌉ + J [q]. So I⌈sq⌉ + J [q] is a big p and p−1 family. □
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For two m-primary ideals I, J , in [Tay18] Taylor considers s-multiplicity(function)
which is a scalar multiple of the corresponding hI,J . When Jn = J [q], our proof of the
existence of h function in Theorem 3.7 is not only different from the proof of Theorem 2.1
of [Tay18], but also is still valid when both I and J are not necessarily m-primary. More-
over, in Theorem 3.7, the flexibility of choosing C depending only ϕ and c is a byproduct
of our proof; this flexibility is crucial in Theorem 3.13 and later.

3.2. Growth of h-function, m-adic continuity. Next, we investigate how hn,I,J•(s)
changes when the I or J• is replaced by another ideal or ideal family which is m-adically
close the initial one. The results we prove are used later in Section 6, for example, to prove
continuity of Hilbert-Kunz density function g̃M,J for non m-primary J ; see Theorem 6.7.

Lemma 3.12. Let R be a noetherian local ring, I, J be two R-ideals such that I+J is m-
primary. Let I ′, J ′ be two ideals such that I ⊂ I ′, J ⊂ J ′. Then hn,M,I,J(s) ≥ hn,M,I′,J ′(s).

Proof. If I ⊂ I ′, J ⊂ J ′ then (I⌈tp⌉+J [p])M ⊂ (I ′⌈tp⌉+J ′[p])M , so l(M/(I⌈tp⌉+J [p])M) ≥
l(M/(I ′⌈tp⌉ + J ′[p])M), which just means hn,M,I,J(s) ≥ hn,M,I′,J ′(s). □

Theorem 3.13. Let (R,m) be a noetherian local ring. Assume I, J• satisfy Condition
C.
(1) Fix s0 ∈ R. We can choose t depending only on I, J•, s0 such that for any ideals
J ⊂ mt,I ⊂ I ′, and all n,

hn,M,I′,J•(s) = hn,M,I′,J•+J [pn](s) for s ≤ s0.

(2) Assume J• is both big p and p−1 family. There exists a constant c such that for any
ideals I ′ ⊂ mt, t ∈ N and s ∈ R,

hn,M,I,J(s− c/t) ≤ hn,M,I+I′,J(s) ≤ hn,M,I,J(s) ≤ hn,M,I+It,J(s+ c/t).

(3) Fix s0 > 0. There exists a t0 and a constant c, both only depending on s0, I, J• such
that for any t ≥ t0, It ⊆ mt,

hn,M,I,J•(s− c/t) ≤ hn,M,I+It,J•(s) ≤ hn,M,I,J•(s) ≤ hn,M,I+It,J•(s+ c/t),

for s ≤ s0.

Proof. (1) Let t be the smallest integer such that mt[q] ⊂ I⌈s0q⌉ + Jn for all n. By the
previous lemma, it suffices to consider the case where J = mt. So for I ⊆ I ′,

I ′⌈sq⌉ + Jn = I ′⌈sq⌉ + Jn +mt[q] for s ≤ s0 and alln ∈ N,
proving the desired statement.

(2) Since J• is a big family, we can choose t0 such that mt0[q] ⊆ Jn for all n. We
may also assume I ′ = mt. Let m be generated by µ-elements, set ϵt = t0µ/t. Then
mt⌈ϵtq⌉ ⊆ mt0µq ⊆ mt0[q] ⊂ Jn for all n. So

(I +mt)⌈sq⌉ =
∑

0≤j≤⌈sq⌉

I⌈sq⌉−jmtj ⊂ I⌈sq⌉−⌈ϵtq⌉+mt⌈ϵtq⌉ ⊂ I⌈sq⌉−⌈ϵtq⌉+Jn ⊆ I⌈(s−t0µ/t)q⌉+Jn

Thus we have

l(M/(I⌈(s−t0µ/t)q⌉ + Jn)M) ≤ l(M/((I +mt)⌈sq⌉ + Jn)M) ≤ l(M/(I⌈sq⌉ + Jn)M).

So taking c = t0µ verifies the first two inequalities. These equalities are independent of
s, so we may replace s by s+ c/t to get the third inequality.
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(3) By (1) we can choose t1 depending on s0, I, J• such that hn,M,I′,J•+mt1[q](s) = hn,M,I′,J•(s)
whenever I ⊂ I ′ and s ≤ s0 +1. By (2), we can choose c depending on J +mt1 such that

hn,M,I,J•+mt1[q](s−c/t) ≤ hn,M,I+It,J•+mt1[q](s) ≤ hn,M,I,J+J•+mt1[q](s) ≤ hn,M,I+It,J•+mt1[q](s+c/t),

for It ⊆ mt. Take t0 = c. Since for t ≥ t0 and s ≤ s0, s+
c
t
≤ s0 + 1, the above chain of

inequalities imply

hn,M,I,J•(s− c/t) ≤ hn,M,I+It,J•(s) ≤ hn,M,I,J•(s) ≤ hn,M,I+It,J•(s+ c/t).

□

Assertion (1) of the theorem above allows us to replace J• by a big p and p−1 family
in questions involving local structure of h-functions. This observation is repeatedly used
later; see Theorem 6.7.

Next we prove that the sequence hn,I,J•,d(s) is uniformly bounded on every compact
subset. When J• = J [pn] for some J , we refine the bound to show that hn,I,J•,d(s) is
bounded above by a polynomial of degree dim(R

J
) in Theorem 3.16. The uniform (in

n) polynomial bound on hn is used in the extension of the theory of Frobenius-Poincaré
functions in Lemma 4.1, Theorem 4.3.

Lemma 3.14. In a local ring (R,m), let I, J• satisfy condition C. Let M be a finitely
generated R-module. Given s0 ∈ R, there is a constant C depending only on s0 such that

hn,M,I,J•(s) ≤ C.qd for alln.

Proof. Choose α such that m[pn+α] ⊆ I⌈s0q⌉ + Jn. So for s ≤ s0,

hn,M,I,J•(s) ≤ l(
M

m[pn+α]
M) ≤ Cqd.

The last ineuqality is a consequence of [Mon83]. □

Remark 3.15. Given a noetherian local ring (R,m, k) containing Fp, a field extension

k ⊆ L denote by S the m-adic completion of L⊗k R̂. Here R̂ is the m-adic completion of
R and R̂ can be treated as a k-algebra thanks to the existence of coefficient field of R̂; see
[Sta23, tag 0323]. The residue field of the local ring S is isomorphic to L. The natural map
R → S is faithfully flat. Now given a finite length R-module M , lR(M) = lS(S ⊗R M).
We use this observation to make simplifying assumption on the residue field of R.

Theorem 3.16. Let (R,m, k) be a noetherian local ring of dimension d, I, J be two R-
ideals such that I+J is m-primary. Assume I is generated by µ elements, M is generated
by ν elements, and d′ = dimR/J . Then:

(1) There exist a polynomial P1(s) of degree d
′ such that for any s ≥ 0,

l(M/I⌈sq⌉ + J [q]M)

l(R/m[q])
≤ P1(s).

Moreover if d′ > 0, the leading coefficient of P1 can be taken to be νe(I,R/J)
d′!

(2) There exist a polynomial P2(s) such that

l(M/I⌈sq⌉ + J [q]M)

qd
≤ P2(s).

In other words, hn,M,d(s)/q
d ≤ P2(s).

(3) There exists a polynomial P3 of degree d′ and leading coefficient νe(I,R/J)eHK(R)
d′!

such that for any s ≥ 0,

limn→∞
l(M/I⌈sq⌉ + J [q]M)

qd
≤ P3(s).
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Proof. We may assume that the residue field is perfect by using Remark 3.15

(1) Suppose M is generated by ν many elements. Then

l(M/I⌈sq⌉ + J [q]M) ≤ νl(R/I⌈sq⌉ + J [q])

≤ νl(R/(I⌈s⌉)[q] + J [q])

≤ νl(F n
∗ R/(I

⌈s⌉ + J)F n
∗ R)

≤ νµR(F
n
∗ R)l(R/I

⌈s⌉ + J)

Let P0 be the Hilbert-Samuel polynomial for the I-adic filtration on R/J ; P0 has

degree d′ and leading coefficient νe(I,R/J)
d′!

. Fix s0 such that l(R/I⌈s⌉+J) = P0(⌈s⌉)
and P0 is non-decreasing for s ≥ s0. Thus for s ≥ s0,

l(R/I⌊s⌋ + J) ≤ P0(s+ 1).

When R
J
has Krull dimension zero, P0(s) = l(R/J) and l(R/I⌈s⌉ + J) ≤ P0(s+1)

for all s, so we can take the desired P1 to be P0(s + 1). When R/J has positive
Krull dimension, we can add a suitable positive constant to P0(s+ 1) to get a P1

so that l(R/I⌊s⌋ + J) ≤ P1(s) on [0, 2] and thus on R.
(2) Since limn→∞ l(R/m[q])/qd exists,

C = sup
n
l(R/m[q])/qd

exists. So for any n, l(R/m[q])/qd ≤ C, and P2 = CP1 satisfies (2).
(3)

limn→∞
l(M/I⌈sq⌉ + J [q]M)

qd

≤ limn→∞
l(M/I⌈sq⌉ + J [q]M)

l(R/m[q])
limn→∞

l(R/m[q])

qd

≤ eHK(R)P1(s).

So P3 = eHK(R)P1 works.

□

3.3. Lipschitz continuity of h-functions, application of a ‘convexity technique’.
Proving continuity of hR,I,J•- when R is a domain is more involved than proving its ex-
istence. In this subsection, we develop results aiding the proof of Lipschitz continuity of
hR,I,J• ; see Theorem 3.20. When Jn = J [q], these results are used to prove existence and
continuity of the h-function of a finitely generated module in Theorem 3.30, by reducing
the problem to the case where R is reduced. The key result aiding these applications
is Theorem 3.19. We prove this by utilizing the monotonicity of a certain numerical
function. This ‘convexity technique’ is repeatedly used later to prove left and right differ-
entiability of the h-function in among other properties. The required monotonicity result
appears in Lemma 3.17. This is an adaptation and generalization of Boij-Smith’s result
in [BS15] which is suitable for our purpose.

Lemma 3.17. Let (R,m) be a noetherian local ring, I be an m-primary ideal generated by
µ elements, M be a finitely generated R-module, S be the polynomial ring of µ-variables
over R

m
. Then the function i→ l(I iM/I i+1M)/l(Si) is decreasing for i ≥ 0.
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Proof. Consider the associated graded ring grI(R). Since I is generated by a set of µ
elements, as a graded ring grI(R) is a quotient of the standard graded polynomial ring
R/I[T1, ..., Tµ] over R/I. Recall S = R

m
[T1, ..., Tµ]. Since M/IM is Artinian, there exists

a filtration

0 = N0 ⊂ N1 ⊂ ... ⊂ Nl =M/IM, such thatNj+1/Nj =
R

m
for 0 ≤ j ≤ l − 1.

LetMj be the grI(R)-submodule of grI(M) spanned by Nj. ThenMj+1/Mj is annihilated
by mgrI(R). So it is naturally a grI(R)/mgrI(R)-module, hence is an S-module, and it
is generated in degree 0. So by Theorem 1.1 of [BS15], for any i ≥ 0,

l(Mj+1/Mj)i/l(Si) ≤ l(Mj+1/Mj)i+1/l(Si+1).

Since truncation at degree i is an exact functor from grI(R)-modules to R-modules, taking
sum over 0 ≤ j ≤ l − 1 we get l(Ml)i/l(Si) ≤ l(Ml)i+1/l(Si+1). Since Ml = grI(R)Nl =
grI(M), we are done. □

When I is a principal ideal, the above lemma manifests into the following easily verifiable
result.

Example 3.18. Let R be a noetherian local ring, f be an element in R such that R/fR
has finite length. Then for any j ≥ i, l(f iR/f i+1R) ≥ l(f jR/f j+1R). This means that
the function i→ l(R/f iR) is convex on N; see Definition 5.2.

Theorem 3.19. Let R be a noetherian local ring, M be a finitely generated module of
dimension d. Suppose I, J• satisfy Condition C. Fix 0 < s1 < s2 <∞ ∈ R. Then there
is a constant C and a power q0 = pn0 that depend on s1, s2, but independent of n such
that for any s1 ≤ s ≤ s2 − 1/q and q ≥ q0

l(
(I⌈sq⌉ + Jn)M

(I⌈sq⌉+1 + Jn)M
) ≤ Cqd−1

In other words, whenever s1 ≤ s ≤ s2 − 1/q and q ≥ q0,

|hn,M(s+ 1/q)− hn,M(s)| ≤ Cqd−1.

Proof. We may assume s1, s2 ∈ Z[1/p]. Otherwise, since Z[1/p] is dense in R, we can
choose s′1 ∈ (0, s1) ∩ Z[1/p], s′2 ∈ (s2,∞) ∩ Z[1/p] and replace s1, s2 by s′1, s

′
2. Choose

s3 ∈ Z[1/p] such that 0 < s3 < s1 and choose q0 such that s1q0, s2q0, s3q0 ∈ Z. Let I be
generated by a set of µ many elements. Applying Lemma 3.17 to the module M/JnM
we know for any 0 ≤ t ≤ ⌈sq⌉,

l( I⌈sq⌉(M/JnM)

I⌈sq⌉+1(M/JnM)
)(

µ+⌈sq⌉−1
µ−1

) ≤
l( It(M/JnM)
It+1(M/JnM)

)(
µ+t−1
µ−1

) .

Rewritten, the above inequality yields

l( (I⌈sq⌉+Jn)M

(I⌈sq⌉+1+Jn)M
)(

µ+⌈sq⌉−1
µ−1

) ≤
l( (It+Jn)M

(It+1+Jn)M
)(

µ+t−1
µ−1

) .

Thus for s1 ≤ s ≤ s2 − 1
q
,
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(⌈sq⌉ − s3q)l(
(I⌈sq⌉ + Jn)M

(I⌈sq⌉+1 + Jn)M
) ≤

(
µ+ ⌈sq⌉ − 1

µ− 1

) ⌈sq⌉−1∑
t=s3q

l( (It+Jn)M
(It+1+Jn)M

)(
µ+t−1
µ−1

)
≤

(
µ+⌈sq⌉−1
µ−1

)(
µ+s3q−1
µ−1

) l((I⌈sq⌉ + Jn)M

(Is3q + JnM
)

≤
(
µ+⌈sq⌉−1
µ−1

)(
µ+s3q−1
µ−1

) [l( M

(I⌈sq⌉ + Jn)M
)− l(

M

(Is3q + Jn)M
)]

≤
(
µ+s2q−1
µ−1

)(
µ+s3q−1
µ−1

) [l( M

(Is2q + Jn)M
)− l(

M

(Is3q + Jn)M
)].

Therefore for s1 ≤ s ≤ s2 − 1
q
and q ≥ q0,

l(
(I⌈sq⌉ + Jn)M

(I⌈sq⌉+1 + Jn)M
) ≤ 1

s1q − s3q

(
µ+s2q−1
µ−1

)(
µ+s3q−1
µ−1

) [l( M

(Is2q + Jn)M
)− l(

M

(Is3q + Jn)M
)] ≤ Cqd−1.

By Lemma 3.14, we can choose a constant C ′ depending only on s2 such that for s ≤ s2,

l(
M

(Isq + Jn)M
) ≤ C ′qd.

Since
(
µ+s2q−1
µ−1

)
/
(
µ+s3q−1
µ−1

)
is bounded above by a constant depending on s1, s3 and s3

depends only on s2, we can choose C depending only on s1, s2 such that for all n and
q ≥ q0,

l(
(I⌈sq⌉ + Jn)M

(I⌈sq⌉+1 + Jn)M
) ≤ Cqd−1.

Here C is a constant only depending on s1, s2, s3, and s3 depends only on s1. □

Therefore, whenever hM,I,J• exists, it is locally Lipschitz continuous away from zero.

Theorem 3.20. Let I be an ideal and J• be a family of ideals satisfying Condition C
in a domain (R,m) of Krull dimension d. Given real numbers 0 < s1 < s2, there is a
constant C depending only in s1, s2 such that for any x, y ∈ [s1, s2],

|hR(x)− hR(y)| ≤ C|x− y|

Proof. Given s1, s2 as above and x, y in [s1, s2], by Theorem 3.19, we can choose a constant
C depending only on s1, s2 such that

|hn,R(x)− hn,R(y)| = |hn,R(
⌈qx⌉
q

)− hn,R(
⌈qy⌉
q

)| ≤ C|⌈qx⌉
q

− ⌈qy⌉
q

|qd for alln.

Divide both sides by qd and take limit as n approaches infinity. Since for any real number

s, hn(s)
qd

and ⌈qs⌉/q converge to hR(s) and s respectively,

|hR(x)− hR(y)| ≤ C|x− y|.
□

Lemma 3.21. Assume the residue field of R is perfect and M is a module of dimension
d. For each integer n0 ≥ 0 and fixed 0 < s1 < s2 < ∞ ∈ R, there is a constant C
independent of n such that

|hn+n0,M,I,J(s)− hn,Fn0
∗ M,I,J(s)| ≤ Cqd−1
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for any s1 ≤ s ≤ s2.

Proof. For any q0, ⌈sqq0⌉ ≤ ⌈sq⌉q0 ≤ ⌈sqq0⌉+ q0. We have,

|hn+n0,M,I,J(s)− hn,Fn0
∗ M,I,J,d(s)|

= |l(M/(I⌈sqq0⌉ + J [qq0])M)− l(F n0
∗ M/(I⌈sq⌉ + J [q])F n0

∗ M)|
= |l(M/(I⌈sqq0⌉ + J [qq0])M)− l(M/(I⌈sq⌉[q0] + J [qq0])M)|

= (l(I⌈sqq0⌉ + J [qq0])M/(I⌈sq⌉q0 + J [qq0])M) + l(I⌈sq⌉q0 + J [qq0])M/(I⌈sq⌉[q0] + J [qq0])M)) .

Note that 1/q0⌈sqq0⌉ ≥ sq ≥ ⌈sq⌉ − 1, so ⌈sq⌉q0 ≤ ⌈sqq0⌉+ q0, so I
⌈sqq0⌉+q0 ⊂ I⌈sq⌉q0 .

Suppose I is generated by µ elements, then by Lemma 3.6, I⌈sq⌉q0 ⊂ I(⌈sq⌉−µ+1)[q0]. Now
by Theorem 3.19, we can choose a constant C depending only on s1, s2 such that for all
s ∈ [s1, s2],

l(
(I⌈sqq0⌉ + J [qq0])M

(I⌈sq⌉q0 + J [qq0])M
) + l(

(I⌈sq⌉q0 + J [qq0])M

(I⌈sq⌉[q0] + J [qq0])M
)

≤ l(
(I⌈sqq0⌉ + J [qq0])M

(I⌈sqq0⌉+q0 + J [qq0])M
) + l(

(I(⌈sq⌉−µ+1)[q0] + J [qq0])M

(I⌈sq⌉[q0] + J [qq0])M
) ≤ Cqd−1 .

□

The lemma above allows us to replace M by F n0
∗ M . Since we may replace R by

R/annF n0
∗ M and for large enough n0, annF

n0
∗ M contains the nilradical of R; case, we

may assume R is reduced while proving the existence of hM,I,J .

Corollary 3.22. Assume the residue field of R is perfect. For each n0 ≥ 0, hM,I,J,d(s)
exists if and only if hFn0

∗ M,I,J,d(s) exists, and if they both exist then

qd0hM,I,J,d(s) = hFn0
∗ M,I,J,d(s).

3.4. Existence of hM,I,J . For a noetherian local ring (R,m), R-ideals I, J such that
I + J is m-primary and a finitely generated module, we prove the existence of hM,I,J

in Theorem 3.30. We prove preparatory results to reduce this problem to the situation
where M = R and R is a domain. We prove the local Lipschitz continuity of hM,I,J in
Theorem 3.31. Recall:

Definition 3.23. Set AsshR = {P ∈ SpecR : dimR = dimR/P}.

Lemma 3.24. [Mon83, Proof of Lemma 1.3]If M,N are two R-modules such that MP
∼=

NP ,∀P ∈ AsshR. Then there is an exact sequence

0 → N1 →M → N → N2 → 0

such that dimN1, dimN2 ≤ dim(R) − 1. Moreover it breaks up into two short exact
sequences:

0 → N1 →M → N3 → 0

0 → N3 → N → N2 → 0

such that dim(N3) < dim(R).

Lemma 3.25. Let N ⊂ M be two R-modules of finite length, and take a ∈ R, then
l(M/aM) ≥ l(N/aN).

Proof. Consider the commutative diagram,
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0 0 :N a N N N
aN

0

0 0 :M a M M M
aM

0

a

a

We see the map 0 :N a→ 0 :M a is injective. By the additivity of length on short exact
sequences we see l(M/aM) = l(0 :M a) ≥ l(0 :N a) = l(N/aN). □

Lemma 3.26. Let M1,M2,M3,M4 be four submodules of an R-module M such that
M3 ⊂ M1, M4 ⊂ M2. Then M1 +M2/M3 +M4 has a filtration with factors which are
quotients of M1/M3 and M2/M4. In particular, if M1/M3 and M2/M4 have finite lengths
then so does M1 +M2/M3 +M4 and l(M1 +M2/M3 +M4) ≤ l(M1/M3) + l(M2/M4).

Proof. Consider the filtration

0 ⊆ M3 +M2

M3 +M4

⊆ M1 +M2

M3 +M4

The factors in the above filtration, namely M3 +M2/M3 +M4 and M1 +M2/M3 +M2,
are quotients of M2/M4 and M1/M3 respectively. □

Lemma 3.27. Let (R,m, k) be a local ring of dimension d. Suppose I, J• satisfy condi-
tion C, and M is a module of dimension d′ ≤ d − 1. Fix s0 ∈ R. Then there are con-
stants C1, C2 depending on s0 but independent of n such that l(TorR0 (R/(I

⌈sq⌉+Jn),M)) ≤
C1q

d−1 and l(TorR1 (R/(I
⌈sq⌉ + Jn),M)) ≤ C2q

d−1 for any s ≤ s0. Moreover if J• is big,
C1, C2 can be chosen independent of s.

Proof. Since I, J• satisfy Condition C, we can find an m-primary ideal J such that for
s ≤ s0, J

[q] ⊆ I⌈sq⌉+Jn for all n. AsM/J [q]M surjects onto TorR0 (R/(I
⌈sq⌉+Jn),M), and

we can find a constant C1, such that l(M/J [q]M) ≤ C1q
dimM , l(TorR0 (R/I

⌈sq⌉+J [q],M)) ≤
C1q

d−1.
To see the bound on Tor1, for a fixed s ≤ s0, consider the exact sequence:

0 → (I⌈sq⌉ + Jn)/J
[q] → R/J [q] → R/(I⌈sq⌉ + J [q]) → 0

So by the long exact sequence of Tor, it suffices to show that we can choose C2 satisfying

l(TorR1 (R/J
[q],M)) ≤ C2q

d−1 and l(
I⌈sq⌉ + Jn

J [q]
⊗M) ≤ C2q

d−1.

Choosing a C2 satisfying the first inequality is possible thanks to [HMM04, Lemma 1.1].
For the remaining inequality, by taking a prime cyclic filtration of M , we may assume
M = R/P for some P ∈ Spec(R) with dimM ≤ dimR − 1. In this case, P /∈ Assh(R).
So we can choose b ∈ P such that dimR/bR ≤ dimR − 1. Taking M = R/J [q] and
N = I⌈sq⌉ + J [q]/J [q] in Lemma 3.25, we see that we can enlarge C2 independently of s
and q so that

l(l(
I⌈sq⌉ + Jn

J [q]
⊗R R/P ) ≤ l(l(

I⌈sq⌉ + Jn
J [q]

⊗R R/bR)

≤ l(R/J [q] ⊗R R/bR) = l(R/bR + J [q]) ≤ C2q
d−1.

So we are done. □

Lemma 3.28. Let M,N be two finitely generated R-modules that are isomorphic at
P ∈ AsshR. Then for any t > 0, there is a constant C depending on M, I, J, t but
independent of n such that for any s < t

|hn,M,d(s)− hn,N,d(s)| ≤ C/q
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Moreover if J is m-primary, then C can be chosen independently of t.

Proof. By Lemma 3.24, there is an exact sequence

0 → N1 →M → N → N2 → 0

such that dimN1, dimN2 ≤ d− 1. And it breaks up into two short exact sequences:

0 → N1 →M → N3 → 0

0 → N3 → N → N2 → 0

Now by the long exact sequence of Tor we get

|l(M/(I⌈sq⌉ + J [q])M)− l(N3/(I
⌈sq⌉ + J [q])N3)| ≤ l(N1/(I

⌈sq⌉ + J [q])N1)

|l(N3/(I
⌈sq⌉+J [q])N3)−l(N/(I⌈sq⌉+J [q])N)| ≤ l(N2/(I

⌈sq⌉+J [q])N2)+l(Tor
R
1 (R/(I

⌈sq⌉+J [q]), N2))

Thus by Lemma 3.27, there is a constant C such that

|l(M/(I⌈sq⌉ + J [q])M)− l(N/(I⌈sq⌉ + J [q])N)| ≤ Cqd−1

□

Lemma 3.29. Let (R,m, k) be a local ring, I, J be two ideals such that I + J is m-
primary, and M be a finitely generated R-module. For any 0 < s1 < s2 < ∞, there is a
constant C depending on M, I, J, s1, s2 but independent of n such that for any s1 ≤ s ≤ s2

|hn+1,M,d(s)− hn,M,d(s)| ≤ C/q

Proof. We may assume that the residue field is perfect by using Remark 3.15. Choose
sufficiently large n0 such that R/annF n0

∗ M is reduced. The positive constants C1, C2, C3

chosen below depends only on M, I, J, s1, s2 and is independent of n. By Lemma 3.21,

|hn+n0,M,I,J(s)− hn,Fn0
∗ M,I,J(s)| ≤ C1q

d−1

and
|hn+n0+1,M,I,J(s)− hn+1,F

n0
∗ M,I,J(s)| ≤ C1q

d−1

So it suffices to prove existence of a suitable C such that

|hn+1,F
n0
∗ M,d(s)− hn,Fn0

∗ M,d(s)| ≤ C/q.

Replacing M by F n0
∗ M and R by R/annF n0

∗ M , so we may assume R is reduced. In this
case,

|hn+1,M,I,J(s)− hn,F∗M,I,J(s)| ≤ C2q
d−1.

Thanks to the reducedness of R, the localizations of M⊕pd and F∗M are isomorphic at
all P ∈ AsshR. So by Lemma 3.28,

|hn,F∗M,I,J(s)− pdhn,M,I,J(s)| ≤ C3q
d−1.

Thus one can choose a C which depends only onM, I, J, s1, s2 such that for all s ∈ [s1, s2]
and n ∈ N,

|hn+1,M,I,J(s)− pdhn,M,I,J(s)| ≤ Cqd−1.

Dividing by (pq)d, we get

|hn+1,M,I,J,d(s)− hn,M,I,J,d(s)| ≤ C/q.

□

Theorem 3.30. Let (R,m, k) be a noetherian local ring, I, J be two R-ideals such that
I + J is m-primary, and M is a finitely generated R-module. Then for every s ∈ R,

1

qdim(M)
lim
n→∞

hn,M,I,J(s) = hM,I,J(s)

exists. Moreover the convergence is uniform on [s1, s2] for any 0 < s1 < s2 <∞.
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Proof. By replacing R by R/ann(M), we may assume dim(M) = dim(R). Given s1, s2 as
in the statement, it follows from Lemma 3.29 that hn,M,I,J(s)/q

dim(M) is uniformly Cauchy
on [s1, s2]. So the theorem follows. □

We also have:

Theorem 3.31. Let (R,m, k) be a local ring of dimension d, I, J be two R-ideal, I + J
is m-primary, and M be a finitely generated R-module. Then:

(1) hM(s) is Lipschitz continuous on [s1, s2] for any 0 < s1 < s2 <∞. Consequently,
it is continuous on (0,∞).

(2) hM(s) is increasing. It is 0 on (−∞, 0]. It is continuous if and only if it is
continuous at 0, if and only if lims→0+ hM(s) = 0. The limit lims→0+ hM(s) always
exists and is nonnegative.

(3) Assume J is m-primary. Then for s >> 0, hn,M(s) = eHK(J,M) is a constant.
(4) There is a polynomial P (s) of degree dimR/J such that hM(s) ≤ P (s) on R.

Proof. (1) An argument similar to that in the proof of Theorem 3.20 with R replaced
byM and Jn = J [q] yields a proof. The difference is that when Jn = J [q], we know
the existence of hM,I,J .

(2) If s1 ≤ s2, then ⌈s1q⌉ ≤ ⌈s2q⌉, so I⌈s2q⌉ ⊂ I⌈s1q⌉. This implies

l(M/(I⌈s1q⌉ + J [q])M) ≤ l(M/(I⌈s2q⌉ + J [q])M),

which is just

hn,M(s1) ≤ hn,M(s2).

So after dividing pndimM and let n → ∞, we get hM(s1) ≤ hM(s2). This implies
hM(s) is increasing; so in particular the limit lims→0+ hM(s) always exists and is
at least hM(0). If s ≤ 0, then ⌈sq⌉ ≤ 0, so I⌈sq⌉ = R. ThusM/(I⌈s1q⌉+J [q])M = 0
and hn,M(s) = 0 for any n, so hM(s) = 0. So hM(s) is continuous on (−∞, 0) and
(0,∞), and lims→0− hM(s) = 0 = hM(0), so we get (2).

(3) Let J be generated by µ elements. For s >> 0, I⌊s/µ⌋ ⊂ J . So I⌈sq⌉ ⊂
I⌊s/µ⌋qµ ⊂ Jqµ ⊂ J [q], so hn,M(s) = l(M/J [q]M) and hM(s) = limn→∞

l(M/J [q]M)
qd

=

eHK(J,M). If s = 0 then I⌈sq⌉ = R so hn,M(0) = 0.
(4) This is a corollary of Theorem 3.16 and Theorem 3.30.

□

The associativity formula for h-function below follows directly from Lemma 3.28.

Proposition 3.32. LetM be a d-dimensional finitely generated R-module. Let P1, P2, . . . , Pt
be the d-dimensional minimal primes in the support of M . Then,

hM,I,J,d(s) =
t∑

j=1

lRPj
(MPj

)hR/Pj ,IR/Pj ,JR/Pj ,d(s).

4. Frobenius-Poincaré function in the local setting

We prove the existence of Frobenius-Poincaré functions in the local setting. Given an
ideal I and a family J• and a finitely generated R-module M , set

fn,M,I,J•(s) = hn,M,I,J•(s+
1

q
)− hn,M,I,J•(s).

When Jn = J [q], fn,M,I,J(s) represents fn,M,I,J•(s). We drop one or more parameters in
fn,M,I,J• when there is no resulting confusion. For the rest of this article, we denote the
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imaginary part a complex number y by ℑy and the open lower half complex plane by Ω,
i.e. Ω = {y ∈ C | ℑy < 0}.

Lemma 4.1. Let (R,m, k) be a local ring of dimension d, I, J be two R-ideal, I + J is
m-primary, and M be a finitely generated R-module. Consider the function defined by
the infinite series

Fn,M,I,J(y) :=
∞∑
j=0

fn,M,I,J(j/q)e
−iyj/q

Then Fn,M,I,J(y) defines a holomorphic function on Ω. We often drop one or more pa-
rameters in Fn,M,I,J when there is no chance of confusion.

Proof. There is a polynomial P such that fn,M(s) ≤ hn,M(s + 1) ≤ P (s) for any s; see
Theorem 3.16, Theorem 3.31, assertion (2). Thus

|fn,M,R,I,J(j/q)e
−iyj/q| ≤ P (j/q)ejℑy/q.

Since for fixed ϵ > 0, the series
∑

0≤j<∞ P (j/q)e−jϵ/q converges, on the region where

ℑy < −ϵ, the sequence of functions
∑∞

j=0 fn,M,R,I,J(j/q)e
−iyj/q converges uniformly. The

limit function is thus holomorphic [Ahl79, Thm 1, Chap 5]. Taking union over all ϵ > 0,
we see Fn,M(y) exists and is holomorphic on Ω. □

Remark 4.2. For a big p, p−1 family J•, the analogous Fn,M,I,J•(y) defined using fn,M,I,J•

is entire since the corresponding sum is a finite sum.

Now, we want to check the convergence of (Fn,M,I,J(y)/q
dim(M))n whenever it exists.

We will be repeatedly using the dominated convergence: if a sequence of measurable
functions fn converges to f pointwise on a measurable set Σ and there is a measurable
function g such that |fn| ≤ g on Σ for any n and

∫
Σ
|g| < ∞, then

∫
Σ
|fn − f | converges

to 0, so in particular
∫
Σ
fn converges to

∫
Σ
f .

Theorem 4.3. Let (R,m, k) be a local ring, I, J be two R-ideal, I + J is m-primary,
and M be a finitely generated R-module of dimension d.
(1) Assume J is m-primary. Then FM,I,J(y) = limn→∞ Fn,M(y)/pn dimM exists for all
y ∈ C. This convergence is uniform on any compact set of C. Suppose hM(s) is constant

for s ≥ C, then FM,I,J(y) =
∫ C
0
hM(t)iye−iytdt+ hM(C)e−iyC.

(2) Assume J is not necessarily m-primary. Then for every y ∈ Ω, Fn,M(y)/pndimM

converges to

FM,I,J(y) =

∞∫
0

hM(t)e−iytiydt.

Moreover, this convergence is uniform on any compact subset of Ω and FM(y) := FM,I,J(y)
is holomorphic on Ω.

Proof.
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(1) Since J is m-primary, then hM(s) = hM(C) for some fixed C > 0 and any s ≥ C; see
Lemma 3.8 and Proposition 3.32. Then,

Fn,M(y) =
∞∑
j=0

fn,M(j/q)e−iyj/q

=
∞∑
j=0

(hn,M((j + 1)/q)− hn,M(j/q))e−iyj/q

=

Cq−1∑
j=0

(hn,M((j + 1)/q)− hn,M(j/q))e−iyj/q

=

Cq−1∑
j=0

hn,M(j/q)(e−iy(j−1)/q − e−iy(j)/q) + hn,M(C)e−iy(C− 1
q
)

=

Cq−1∑
j=0

hn,M(j/q)e−iyj/q(eiy/q − 1) + hn,M(C)e−iy(C− 1
q
)

=

∫ C

0

hn,M(t)e−iy⌈tq⌉/qq(eiy/q − 1)dt+ hn,M(C)e−iy(C− 1
q
) .

Fix a compact subset K of C. Given δ > 0, choose b > 0 such that for all y ∈ K, t ∈ R
and n ∈ N ∫ b

0

(
1

qd
|hn,M(t)e−iy⌈tq⌉/qq(eiy/q − 1)|+ |hM(t)e−iyt(iy)|)dt ≤ δ

2
.

We have

| 1
qd
Fn,M(y)−

∫ C

0

hM(t)e−iyt(iy)dt− hM(C)e−iyC |

≤
∫ C

0

|hn,M,d(t)e
−iy⌈tq⌉/qq(eiy/q − 1)− h(y)iye−iyt|dt+ |hn,M(C)e−iy(C− 1

q
) − hM(C)e−iyC |

≤
∫ b

0

(|hn,M,d(t)e
−iy⌈tq⌉/qq(eiy/q − 1)|+ |hM(t)e−iyt(iy)|)dt

+

∫ C

b

|hn,M,d(t)e
−iy⌈tq⌉/qq(eiy/q − 1)− h(y)iye−iyt|dt+ |hn,M(C)e−iy(C− 1

q
) − hM(C)e−iyC |.

Moreover for y ∈ K, there is a constant C ′ independent of n such that for all t ∈ [b, C]

|hn,M,d(⌊tq⌋/q)− hM(t)| ≤ C ′/q and |e−iy⌊tq⌋/qq(eiy/q − 1)− eiyt(iy)| ≤ C ′/q.

Thus we can choose N0 such that for all n ≥ N0 and y ∈ K,

| 1
qd
Fn,M(y)−

∫ C

0

hM(t)e−iyt(iy)dt− hM(C)e−iyC | ≤ δ.

This proves the desired uniform convergence.
(2)We prove uniform convergence of Fn,M/q

dim(M) to the integral on every compact subset
of Ω; the holomorphicity of FM is then a consequence of [Ahl79, Thm1, Chap 5]. We
have
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Fn,M(y) =
∞∑
j=0

fn,M(j/q)e−iyj/q

=
∞∑
j=0

(hn,M((j + 1)/q)− hn,M(j/q))e−iyj/q

=
∞∑
j=0

hn,M(j/q)(e−iy(j−1)/q − e−iy(j)/q)

=
∞∑
j=0

hn,M(j/q)e−iyj/q(eiy/q − 1)

=

∫ ∞

0

hn,M(t)e−iy⌈tq⌉/qq(eiy/q − 1)dt .

The rearrangements leading to the second and third equality are possible thanks to the
absolute convergences implied by Theorem 3.16. Fix any compact K ⊆ Ω. Using triangle
inequality, we get

|hn,d(t)e−iy
⌊tq⌋
q q(eiy/q − 1)− h(t)e−iyt(iy)|

≤ |hn,d(t)− h(t)||e−iy
⌈tq⌉
q q(eiy/q − 1)|+ |h(t)||e−iy

⌈tq⌉
q − e−iyt||q(eiy/q − 1)|

+|h(t)||e−iyt||q(eiy/q − 1)− iy|

= |hn,d(t)− h(t)||e−iy
⌈tq⌉
q q(eiy/q − 1)|+ |h(t)e−iyt||e−iy(

⌈tq⌉
q

−t) − 1||q(eiy/q − 1)|
+|h(t)e−iyt||q(eiy/q − 1)− iy| .

It follows from the power series expansion of ez at zero and the boundedness of K that
there are constants C1, C2 such that for all y ∈ K , t ∈ R and n ∈ N

|q(eiy/q − 1)| ≤ C1|y|, |q(eiy/q − 1)− iy| ≤ C2
|y|2

q
, |e−iy(

⌈tq⌉
q

−t) − 1| ≤ C1|y(
⌈tq⌉
q

− t)|.

Choose ϵ > 0 such that K ⊆ {y ∈ C | ℑy < −ϵ}. Using the comparisons above, we get
for all y ∈ K , t ∈ R and n ∈ N,

|hn,d(t)e−iy
⌈tq⌉
q q(eiy/q − 1)− h(t)e−iyt(iy)|

≤ |hn,d(t)− h(t)|e−ϵtC1|y|+ |h(t)e−ϵt|C2
1 |y|2|

⌈tq⌉
q

− t|+ |h(t)eϵt|C2
|y|2

q

≤ |hn,d(t)− h(t)|e−ϵtC1|y|+ |h(t)e−ϵt|C2
1

|y|2

q
+ |h(t)e−ϵt|C2

|y|2

q
.

Taking integral on R≥0, we get for y ∈ K and all n ∈ N

| 1
qd
Fn,M(y)− FM,I,J(y)|

≤ C1|y|
∞∫
0

|hn,d(t)− h(t)|e−ϵtdt+ (C2
1 + C2)

|y|2

q

∞∫
0

|h(t)|e−ϵtdt .



22 CHENG MENG AND ALAPAN MUKHOPADHYAY

Thanks to Theorem 3.16, (2), we can choose a polynomial P2 ∈ R[t] such that |hn,d(t)| ≤
|P2(t)| for all n and t ∈ R. Since |P2(t)e

−ϵt| is integrable on R≥0, by dominated conver-
gence

lim
n→∞

∞∫
0

|hn,d(t)− h(t)|e−ϵtdt = 0.

Using this in the last inequality implies uniform convergence of 1
qd
Fn,M(y) to FM,I,J(y)

on K. □

Remark 4.4. Suppose hM(y) is constant for y ≥ C. Since for y ∈ Ω, hM(C)e−iyC converges
to zero as y approaches infinity, the two descriptions of hM in this case match on Ω. When
J• is both big p and p−1, our argument actually produces a corresponding entire function
FM,I,J•(y).

Definition 4.5. Let I, J be two ideals in (R,m) such that I + J is m-primary. For a
finitely generated R-module M , the function FM,I,J(y) is called the Frobenius-Poincaré
function of (M, I, J).
We drop one or more parameters from FM,I,J when there is no possible source of

confusion.

The next result directly follows from Proposition 3.32.

Corollary 4.6. Let M,N be two R-modules such that their localization are isomorphic
at all P ∈ AsshR. Then FM(y) = FN(y).

Proof. This is true because hM(s) = hN(s). □

5. Differentiability of h-function, density function in the local setting

In this section, we discuss the extension of the theory of Hilbert-Kunz density function
in the local setting.

Definition 5.1. Let I be an ideal and J• be a family of ideals in (R,m) satisfying
Condition C. For a finitely generated R-module M and s ∈ R, recall

fn,M,I,J•(s) = hn,M,I,J•(s+
1

q
)− hn,M,I,J•(s) = l(

(I⌈sq⌉ + Jn)M

(I⌈sq⌉+1 + Jn)M
).

Whenever (( 1
pn
)dim(M)−1fn,M,I,J•(s))n converges, we call the limit the density function of

(M, I, J•) at s and denote the limit by fM,I,J•(s). Whenever fM,I,J•(s) exists for all s ∈ R,
the resulting function fM,I,J• is called the density function of (M, I, J•).

We often drop one or more parameters from fn,M,I,J•(s), fM,I,J•(s), fM,I,J• whenever
those are clear from the context.

In Theorem 5.8, we relate the existence of fM,I,J•(s) to the differentiability of hM,I,J•

at s-whenever hM,I,J• exists. We show that hM,I,J• is always left and right differentiable
everywhere on the real line. The new ingredient is our ‘convexity technique’. The h-
function being Lipschitz continuous is differentiable outside a set of measure zero. But
our method shows that the h-function is differentiable outside a countable set. Recall:

Definition 5.2. Let S be a subset of R. We call a function λ : S → R to be convex if
for elements of S, s1 < s2 ≤ t1 < t2,

λ(s2)− λ(s1)

s2 − s1
≥ λ(t2)− λ(t1)

t2 − t1
.



h-FUNCTION, HILBERT-KUNZ DENSITY FUNCTION AND FROBENIUS-POINCARÉ FUNCTION 23

Convexity is a notion that appears naturally in mathematical analysis. For references
on convex functions, see [NP06].
Let I, J•,M be as above. Now we lay the groundwork for the construction of the convex
function H(s, s0) in Theorem 5.3. Fix µ such that I is generated by µ-many elements.
SetMq =M/JnM and S to be the polynomial ring in µ many variables over R/m. Given
a compact interval [a, b] ⊆ (0,∞), thanks to Theorem 3.19 we can choose C such that
for all x ∈ [a, b] and n ∈ N

I⌈xq⌉Mq

I⌈xq⌉+1Mq

= hn(x+
1

q
)− hn(x) ≤ CqdimM−1.

Recall,

l(S⌈xq⌉) =

(
µ+ ⌈xq⌉ − 1

µ− 1

)
= 1/(µ− 1)!(⌈xq⌉)µ−1 +O(⌈xq⌉µ−2).

Fix s0 ∈ R. Taking cues from these two estimates, for s > s0 we define

(5.1) Hn(s, s0) =

⌈sq⌉−1∑
j=⌈s0q⌉

qµ−dim(M)−1l(IjMq/I
j+1Mq)/l(Sj) .

Theorem 5.3. Let I, J• in the local ring (R,m) satisfy Condition C, M be a finitely
generated R-module of Krull dimsnion d, I be generated by a set of µ elements. Set
Mq =M/JnM , fix s0 ∈ R>0. Consider the two situations:

(A) R is a domain and M = R.
(B) Jn = J [q] for some ideal J such that I + J is m-primary and M is any finitely

generated R-module.

Set c(s) = sµ−1

(µ−1)!
. In the context of (A) or (B)3, set

H(s, s0) = hM,I,J•(s)/c(s)− hM,I,J•(s0)/c(s0) +

∫ s

s0

hM,I,J•(t)c
′(t)/c2(t)dt.

(1) On any compact subset of (s0,∞), Hn(s, s0) uniformly converges to H(s, s0).
(2) The function H(s, s0) is a convex function on (s0,∞).

Proof. (1) We have

Hn(s, s0) =

⌈sq⌉−1∑
j=⌈s0q⌉

qµ−d−1l(IjMq/I
j+1Mq)/l(Sj)

=

⌈sq⌉−1∑
j=⌈s0q⌉

qµ−d−1(l(Mq/I
j+1Mq)− l(Mq/I

jMq))/l(Sj)

= qµ−d−1l(Mq/I
⌈sq⌉Mq)/l(S⌈sq⌉−1)− qµ−d−1l(Mq/I

⌈s0q⌉Mq)/l(S⌈s0q⌉)

+

⌈sq⌉−1∑
j=⌈s0q⌉+1

qµ−d−1l(Mq/I
jMq)(1/l(Sj−1)− 1/l(Sj)) .

Since we are in the context of (A) or (B), qµ−d−1l(Mq/I
⌈sq⌉Mq)/l(S⌈sq⌉−1) converges to

h(s)/c(s) and qµ−d−1l(Mq/I
⌈s0q⌉Mq)/l(S⌈s0q⌉) converges to h(s0)/c(s0). Also,

3hM,I,J• exists in the context of (A) or (B)
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⌈sq⌉−1∑
j=⌈s0q⌉+1

qµ−d−1l(Mq/I
jMq)(1/l(Sj−1)− 1/l(Sj))

=

∫ s−1/q

s0

l(Mq/I
⌈tq⌉Mq)

qd
(

1

l(S⌈tq⌉−1)
− 1

l(S⌈tq⌉)
)(qµ)dt .

When q approaches infinity, l(Mq/I⌈tq⌉Mq)

qd
converges to hM(t), and ( 1

l(S⌈tq⌉−1)
− 1

l(S⌈tq⌉)
)(qµ)

converges to c′(t)/c2(t). Also, all these convergence are uniform on any compact subset
of (0,∞). So we get a uniform convergence (uniform on s) on any compact subset of
(s0,∞): ∫ s−1/q

s0

l(Mq/I
⌊tq⌋Mq)

qd
(

1

l(S⌊tq⌋−1)
− 1

l(S⌊tq⌋)
)(qµ)dt

→
∫ s

s0

h(t)c′(t)/c2(t)dt.

This proves that Hn(s, s0) converges to H(s, s0) and the convergence is uniform on any
compact subset of (s0,∞).

(2) We claim Hn is convex on 1/pnZ ∩ (s0,∞). To this end, it suffices to show

Hn(
i+ 1

pn
, s0)−Hn(

i

pn
, s0) ≥ Hn(

i+ 2

pn
, s0)−Hn(

i+ 1

p
, s0).

By definition, this is equivalent to showing

l(I iMq/I
i+1Mq)/l(Si) ≥ l(I i+1Mq/I

i+2Mq)/l(Si+1),

which follows from Lemma 3.17. This convexity of Hn(s, s0) implies the convexity of
the limit function H(s, s0) on (s0,∞) ∩ Z[1/p]. Therefore for s1 < s2 ≤ t1 < t2 in
(s0,∞) ∩ Z[1/p],

H(s2, s0)−H(s1, s0)

s2 − s1
≥ H(t2, s0)−H(t1, s0)

t2 − t1
.

Since H(s, s0) is continuous on (s0,∞), (s, t) → H(t, s0)−H(s, s0)/(t− s) is continuous.
Moreover as Z[1/p] ∩ (s0,∞) is dense in (s0,∞), the slope inequality defining a convex
function (see Definition 5.2) holds for H(s, s0) for points in (s0,∞). □

Theorem 5.4. With notations set in the statement of Theorem 5.3, set H(s) = H(s, s0).
Denote the left and right derivative of a function λ at s ∈ R by λ′−(s) and λ

′
+(s) respec-

tively. In the context of situation (A) or (B) stated in Theorem 5.3,

(1) On the interval (s0,∞), the derivative of H exists except for countably many
points. The left and right derivative of H exists everywhere. The second derivative
of H exists almost everywhere, i.e. outside a set of Lebesgue measure zero.

(2) The left and right derivatives of H are both decreasing in terms of s. We have
H′

+(s) ≤ H′
−(s), and if s1 < s2, H′

−(s2) ≤ H′
+(s1).

(3) On the interval (0,∞), the derivative of h exists except for countably many points.
The left and right derivative of h exists everywhere. The second derivative of h
exists almost everywhere.

(4) On (s0,∞), h′+(s) = H′
+(s)c(s), h

′
−(s) = H′

−(s)c(s) exists, and h
′
+(s) ≤ h′−(s) for

any s ∈ (0,∞).
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Proof. (1) and (2) follows from properties of convex functions and the convexity of H in
Theorem 5.3, (2).

(3), (4): Recall

H(s, s0) = hM,I,J•(s)/c(s)− hM,I,J•(s0)/c(s0) +

∫ s

s0

hM,I,J•(t)c
′(t)/c2(t)dt.

Since in the context of (A) and (B) hM,I,J• is continuous on (0,∞), the part of H(s, s0)
given by the integral is always differentiable. So (3) follows from the analogous properties
of H(s, s0) in (1) by varying s0. The formulas in (4) follow from a direct computation.
That h′+(s) ≤ h′−(s) follows from these formulas and (2). □

Remark 5.5. Trivedi asks when the Hilbert-Kunz density function of a graded pair (R, J)
is dim(R) − 2 times continuously differentiable; see [Tri21, Question 1]. In general the
Hilbert-Kunz density function need not be dim(R)− 2 times continuously differentiable;
see [Muk23, Example 8.3.2]. Our work shows that the Hilbert-Kunz density function
is always differentiable outside a set of measure zero. Indeed, a convex function on an
interval is twice differentiable outside a set of measure zero; see [NP06, Section 1.4].
Thus from Theorem 5.3, it follows that outside a set of measure zero the h function is
twice differentiable. Now from Theorem 6.7, we conclude that the Hilbert-Kunz density
function of a graded domain of dimension at least two is differentiable outside a set of
measure zero.

Remark 5.6. The conclusions of Theorem 5.3 and Theorem 5.4 are deduced in the context
of situation (A) or (B), because we prove existence and continuity of hM,I,J• in those two
contexts. So even outside the context of (A) or (B) whenever there is an h-function
continuous on (0,∞), we have a corresponding version of Theorem 5.3 and Theorem 5.4.

We return to the question of existence of fM,I,J•(s) at a given s ∈ R. We make
comparisons between the limsup and and liminf of the sequence defining fM,I,J•(s) and
the corresponding h′+(s) and h

′
−(s).

Lemma 5.7. With the notation set in Theorem 5.3, set

Dn,t = fn,M,I,J•(t/p
n) = hn,M,I,J•((t+ 1)/pn)− hn,M,I,J•(t/p

n).

In the context of situation (A) or (B),

(1)

h′+(s) = lim
m→∞

lim
n→∞

⌈spmpn⌉+pn−1∑
t=⌈spmpn⌉

Dm+n,t

pm(d−1)pnd
.

(2)

h′−(s) = lim
m→∞

lim
n→∞

⌈spmpn⌉−1∑
t=⌈spmpn⌉−pn

Dm+n,t

pm(d−1)pnd
.
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Proof. (1) Note

⌈spmpn⌉+pn−1∑
t=⌈spmpn⌉

Dm+n,t

=

⌈spmpn⌉+pn−1∑
t=⌈spmpn⌉

fm+n,M(t/pmpn)

= hm+n,M(⌈spmpn⌉/pmpn + 1/pm)− hm+n,M(⌈spmpn⌉/pmpn) .

Since in the context of (A) or (B), the h-function exists, the right hand side of the desired
equation in (1) is

lim
m→∞

lim
n→∞

hm+n,M(⌈spmpn⌉/pmpn + 1
pm

)− hm+n,M(⌈spmpn⌉/pmpn)
pm(d−1)pn

= lim
m→∞

hM(s+ 1/pm)− hM(s)

1/pm

= h′+(s) .

(2) Note

⌈spmpn⌉−1∑
t=⌈spmpn⌉−pn

Dm+n,t

=

⌈spmpn⌉−1∑
t=⌈spmpn⌉−pn

fm+n,M(t/pmpn)

= hm+n,M(⌈spmpn⌉/pmpn)− hm+n,M(⌈spmpn⌉/pmpn − 1/pm)

Thus the right hand side of the desired equation in (1) is

lim
m→∞

lim
n→∞

hm+n,M(⌈spmpn⌉/pmpn)− hm+n,M(⌈spmpn⌉/pmpn − 1/pm)

pm(d−1)pn

= lim
m→∞

hM(s)− hM(s− 1/pm)

1/pm

= h′−(s) .

□

Theorem 5.8. With the same notation as in Theorem 5.3, in the context of situation
(A) or (B),

(1) for any s > 0,

h′+(s) ≤ limn→∞fn,M,I,J•(s)/p
n(d−1) ≤ limn→∞fn,M,I,J•(s)/p

n(d−1) ≤ h′−(s),

where lim and lim denote liminf and limsup respectively.
(2) At s > 0, if hM is differentiable, then fM,I,J•(s)- the density function of (M, I, J•)

at s exists and is equal to h′M,I,J•(s). If hM(s) is a C1-function, then fM(s) is
continuous.

(3) There is a countable subset of (0,∞) outside which fM,I,J•(s) exists and is equal
to h′M,I,J•(s).
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Proof. (1) In the proof, we also use the notation set in Lemma 5.7, (1). Set

αµ,t =

(
µ+ t− 1

µ− 1

)
.

Note Dn,t = l((I t+Jn)M/(I t+1+Jn)M). For a fixed n, Dn,t/αµ,t is a decreasing function
of t, thanks to Lemma 3.17. So for ⌈spmpn⌉ ≤ t ≤ ⌈spmpn⌉ + pn − 1, Dm+n,t/αµ,t ≤
Dm+n,⌈spmpn⌉/αµ,⌈spmpn⌉, so

Dm+n,t ≤ Dm+n,⌈spmpn⌉
αµ,t

αµ,⌈spmpn⌉

≤ Dm+n,⌈spmpn⌉
αµ,⌈spmpn⌉+pn

αµ,⌈spmpn⌉
.

Also αµ,t is a polynomial of degree µ− 1 in t, so

lim
m→∞

lim
n→∞

αµ,⌈spmpn⌉+pn

αµ,⌈spmpn⌉
= lim

m→∞
lim
n→∞

(⌈spmpn⌉+ pn)µ−1

⌈spmpn⌉µ−1

= lim
m→∞

(spm + 1)µ−1

(spm)µ−1

= 1.

So

h′+(s) = lim
m→∞

lim
n→∞

⌈spmpn⌉+pn−1∑
t=⌈spmpn⌉

Dm+n,t

pm(d−1)pnd

≤ limm→∞limn→∞
pnDm+n,⌈spmpn⌉

pm(d−1)pnd
αµ,⌈spmpn⌉+pn

αµ,⌈spmpn⌉

= limm→∞limn→∞
pnDm+n,⌈spmpn⌉

pm(d−1)pnd

= limm→∞limn→∞
Dm+n,⌈spmpn⌉

pm(d−1)pn(d−1)
.

For a sequence of real numbers βn and any m, limn→∞βm+n = limn→∞βn is independent

of m, so limm→∞limn→∞
Dm+n,⌈spmpn⌉
pm(d−1)pn(d−1) = limn→∞

Dn,⌈spn⌉
pn(d−1) . Therefore we have

h′+(s) ≤ limn→∞
Dn,⌈spn⌉

pn(d−1)
= limn→∞

fn(s)

pn(d−1)
.

The proof of the last inequality is similar. First we have If ⌈spmpn⌉−pn ≤ t ≤ ⌈spmpn⌉−1,
then Dm+n,t/αµ,t ≥ Dm+n,⌈spmpn⌉/αµ,⌈spmpn⌉, so

Dm+n,t ≥ Dm+n,⌈spmpn⌉
αµ,t

αµ,⌈spmpn⌉

≥ Dm+n,⌈spmpn⌉
αµ,⌈spmpn⌉−pn

αµ,⌈spmpn⌉
.
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Also αµ,t is a polynomial of degree µ− 1 in t, so

lim
m→∞

lim
n→∞

αµ,⌈spmpn⌉−pn

αµ,⌈spmpn⌉
= lim

m→∞
lim
n→∞

(⌈spmpn⌉ − pn)µ−1

⌈spmpn⌉µ−1

= lim
m→∞

(spm + 1)µ−1

(spm)µ−1

= 1.

So

h′−(s) = lim
m→∞

lim
n→∞

⌈spmpn⌉−1∑
t=⌈spmpn⌉−pn

Dm+n,t

pm(d−1)pnd

≥ limm→∞limn→∞
pnDm+n,⌈spmpn⌉

pm(d−1)pnd
αµ,⌈spmpn⌉−pn

αµ,⌈spmpn⌉

= limm→∞limn→∞
pnDm+n,⌈spmpn⌉

pm(d−1)pnd

= limm→∞limn→∞
Dm+n,⌈spmpn⌉

pm(d−1)pn(d−1)
.

For a sequence of real numbers βn and any m, limn→∞βm+n = limn→∞βn is independent

of m, so limm→∞limn→∞
Dm+n,⌈spmpn⌉
pm(d−1)pn(d−1) = limn→∞

Dn,⌈spn⌉
pn(d−1) . Therefore we have

h′−(s) ≥ limn→∞
Dn,⌈spn⌉

pn(d−1)
= limn→∞

fn(s)

pn(d−1)
.

(2) If hM is differentiable at s, h′+(s) = h′−(s). Thus (1) implies that fn,M(s)/qd−1 exists
and is equal to h′(s), rest of (2) is clear.

(3) folows from Theorem 5.4, (3). □

Remark 5.9. We prove Theorem 5.8 in the context of situation (A) or (B) defined in
Theorem 5.3- which is precisely the contexts where we prove existence of hM,I,J• in this
article. Thus when (R,m) is a domain, I, J• satisfy Condition C, we get a correspond-
ing density function which is well-defined outside a countable subset of (0,∞). One
particular special case, potentially important for its application to prime characteristic
singularity theory, is when J• is the ideal sequence that defines the F -signature of (R,m);
see Example 3.10.

When Jn = J [q], Theorem 5.8 yields a Hilbert-Kunz density function of (I, J) well
defined outside a countable subset of (0,∞).
The function hM,I,J• need not be continuous or differentiable at zero. In Theorem 8.11,

we prove that hR,I,J is continuous at zero if and only if dimR − dimR/I ≥ 1 and
differentiable at zero if and only if dimR− dimR/I ≥ 2.

Example 5.10. We point out that the h-function need not be differentiable on (0,∞).
Our example of a non differentiable h-function comes from [BST13]. Fix a regular local
domain (R,m) of dimension d and a non-zero f ∈ R. For t ∈ R, [BST13] considers the
function t→ s(R, f t): the F -signature of the pair (R, f t) which is shown to be the same
as

s(R, f t) = lim
n→∞

1

qd
l(

R

m[pn] : f ⌈tpn⌉ ).

With I = (f), hR,I,m(t) = 1 − s(R, f t); see [BST13, section 4]. At t = 1, the left hand
derivative of hI is the F -signature of R/f ; see [BST13, Thm 4.6], while the right hand
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derivative is zero since h(s) = 1 for s ≥ 1. So h is not differentiable at one if and only if
the F -signature of R/f is non-zero, precisely when R/f is strongly F -regular. A concrete
example comes from the strongly F -regular ring, Fp[[x, y, z]]/(x2 + y2 + z2) with p ≥ 3.

Example 5.11. We point out that the limit defining the density function at a particular
s ∈ R, i.e. of fn,M,I,J(s)/q

dim(M)−1 may not converge. For example, when I = 0, M = R,
then fn,M,I,J(0) = l(R/J [q]); thus fn,M,I,J/q

dimR = eHK(J,R) is a nonzero real number, so
fn,M,I,J/q

dimR−1 goes to infinity. This example implies that some assumption is necessary
to guarantee the existence of the density function at every point.

Example 5.12. In the definition of the density function if we replace ⌈sq⌉ by ⌊sq⌋, then
we have more examples where the density function does not exist. We recall Otha’s
example mentioned in [Kos17, sec 3] which produces such instances. Let R be the
power series ring k[[x1, . . . , xd+1]], α1 ≤ . . . ≤ αd+1 be a sequence of positive integers,
I = (xα1

1 . . . x
αd+1

d+1 ) be a monomial principal ideal, J = (x1, . . . , xd+1) be the maximal
ideal of R. Assume moreover that αd < αd+1, αd+1 does not divide p,and ϵn is the
residue of pn modulo αd+1. Let f̃ be the density function defined using ⌊sq⌋, then

limn→∞ f̃n,R,I,J/(p
ndϵn) exists and is nonzero, so limn→∞ f̃n,R,I,J/p

nd exists if and only
if ϵn is a constant sequence, and this is false in general. In general, ϵn is a periodic
function and its period is the order of p+αn+1Z in the multiplicative group (Z/αn+1Z)∗.

Example 5.13. We give an example, where the density function exists everywhere al-
though the h-function is not differentiable everywhere. Note that the resulting density
function is not continuous in this case; compare with Theorem 6.4. Let M = R = k[[x]]
be the power seires ring, I = J = (x). Then hn(s) = l(R/I⌈sq⌉ + J [q]) = min{⌈sq⌉, q}.
By simple calculation we get fn(s) = 1 when −1/q < s ≤ 1− 1/q and is 0 otherwise. So
f(s) = 1 when 0 ≤ s < 1 and f(s) = 0 otherwise.

Here fn converges pointwise but not uniformly. Outside an arbitrary neighborhood of
0 and 1 then fn converges uniformly.
On the other hand, h(s) is 0 when s ≤ 0, s when 0 ≤ s ≤ 1, 1 when s ≥ 1, and is

continuous. We have f(s) = h′(s) when s ̸= 0, 1; when s = 0, 1 h′(s) does not exist and
f(s) = h′+(s). This leads us to guessing that whenever the density function exists at s,
it coincides with the right hand derivative h′+(s).

Remark 5.14. Assume J• is big and hM,I,J• is differentiable everywhere. Since hM,I,J•

is eventually constant (Lemma 3.8), the resulting density function fM,I,J• = h′M,I,J• is
supported on some compact interval [0, b]. So the density function has to increase and
decrease on [0, b]. By Theorem 5.4, fM,I,J• = h′(s) = H′(s)sµ−1/(µ − 1)!, where H′ is
decreasing since H is convex; so this gives a natural way to represent fM,I,J• as a product
of a decreasing and an explicit increasing function, namely c(s). This may help analyzing
the monotonicity of the density function.

6. Relation among h, density, Frobenius-Poincaré functions

In Section 4 we developed a notion of Frobenius-Poincaré function in the local setting.
Work of Section 5 gives a notion of Hilbert-Kunz density function in the local setting,
at least outside a countable subset of (0,∞). When (R,m) is graded, we compare these
local notions defined using the m-adic filtration with the classical notion of Frobenius-
Poincaré function and Hilbert-Kunz density function defined (see Section 2) using the
graded structure of the underlying objects.



30 CHENG MENG AND ALAPAN MUKHOPADHYAY

Lemma 6.1. Let (R,m) be a standard graded ring, M be a finitely generated Z-graded
module of dimension d, J be a homogeneous ideal of finite colength. Set

gn,M,J,d−1(s) =
1

qd−1
l(

M

J [q]M
)⌈sq⌉, gn,M,J(s) = l(

M

J [q]M
)⌈sq⌉ .

(1) WhenM is generated in degree zero, for any graded submodule N ⊆M (M/N)j =
mj(M/N)/mj+1(M/N).

(2) When M is generated in degree zero, gn,M,J(s) = l( M
J [q]M

)⌈sq⌉ = fn,M,m,J(s).

Proof. Let N be any submodule of M , then M/N is also generated in degree 0, so
(M/N)≥j = mj(M/N) and (M/N)j = mj(M/N)/mj+1(M/N) for any j. This implies
gn,M,J(s) = fn,M,m,J(s). □

Lemma 6.2. We define an equivalence relation ∼ on graded modules over a standard
graded ring R of positive dimension over a field: we say M ∼ N when there is a ho-
mogeneous map ϕ : M → N such that dimKerϕ, dimCokerϕ ≤ dimR − 1, and let ∼
also denote the minimal equivalence relation generated by such relations. Then M is
equivalent to some module generated in degree 0.

Proof. We can choose an element c ∈ R1 such that dimR/cR ≤ dimR. First, we find a
sufficient large n > 0 such that M is generated in degree at most n. Then we truncate
at degree n to get M≥n := ⊕∞

j=nMj, which is generated in degree n. The module M/M≥n
is Artinian. The inclusion M≥n ↪→M shows M≥n ∼M . The map M≥n → M≥n[n] given
by multiplication by cn has its kernel and cokernel annihilated by cn. So the kernel and
cokernel have dimension less than dimR. Thus M ∼ M≥n ∼ M≥n[n] . Since M≥n[n] is
generated in degree zero, we are done. □

The next result follows directly from the lemma above and Proposition 3.32.

Lemma 6.3. Let (R,m) be standard graded,M be a finitely generated Z-graded R-module,
I, J• be homogeneous; assume that the corresponding objects obtained by localizing at m
satisfy condition (A) or (B) stated in Theorem 5.3. Then there is a finitely generated
N-graded R-module M ′ generated in degree zero such that, hM,I,J• = hM ′,I,J•.

In the context of (A) or (B) stated in Theorem 5.3 there is an h-function and an
associated density function defined outside a countable subset of (0,∞). Although the
limit defining the density function may not exist at every point of (0,∞), we can define
the integral of f on any bounded measurable subset Σ of [0,∞) by integrating the class
in L1(Σ) represented by the density function. Fix the maximal subset Λ of [0,∞) where
the density function fM,I,J• exists. The continuity of fM at s ∈ Λ refers to the notion of
continuity coming from the subspace topology on the domain Λ inherited from R. With
this understanding, we have the following theorem.

Theorem 6.4. Let (R,m), I, J•, M be as in Theorem 5.3. Then in the context of
situation (A) or (B) as stated in Theorem 5.3, we have for any s > 0,

hM,I,J•(s)− lim
s0→0+

hM,I,J•(s0) =

∫ s

0

fM,I,J•(t)dt.

Moreover if the density fM,I,J• exists and is continuous at s > 0, then hM,I,J• is differen-
tiable at s and fM(s) = h′M(s).

Proof. Given s > 0, choose [a, b] ⊆ R>0 containing s. For a fixed s0 in [a, b] and s > s0,
we have
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hn(s)− hn(s0) =

⌈sq⌉−1∑
j=⌈s0q⌉

fn(
j

q
) .

Thus

1

qd
hn(s)−

1

qd
hn(s0) =

s− 1
q∫

s0− 1
q

fn(t)

qd−1
dt

By Theorem 3.19, we can choose a constant C such that for any n ∈ N and t ∈ [a, b].

1

qd−1
fn(t) ≤ C.

Thus taking limit as n approaches infinity and using dominated convergence, we get

hM,I,J•(s)− hM,I,J•(s0) =

∫ s

s0

fM,I,J•(t)dt.

Taking limit as s0 → 0+ we get the conclusion involving integrals. Note that lims0→0+

exists as h is increasing.
Whenever fM(t) exists at s and is continuous at s, the differentiability of hM at s and

that h′M(s) = fM(s) follows from the second fundamental theorem of Calculus. □

Proposition 6.5. Continue with the same notation as in Lemma 6.1 but M not neces-
sarily generated in degree zero. Set

g̃n,M,J,d−1(s) = l(M/J [q]M)⌊sq⌋/q
d−1.

If additionally d = dim(M) ≥ 2, the two limits below exist for all s ∈ R:
g̃M,J(s) = lim

n→∞
g̃n,M,J,d−1(s), gM,J(s) = lim

n→∞
gn,M,J,d−1(s).

Moreover g̃M,J(s) = gM,J(s).

Proof. By [Tri18], g̃n,M,J,d−1(s) converges for all s ∈ R. For s ∈ Z[1/p], gn,M,J,d−1(s) =
g̃n,M,J,d−1(s) for q large; so we conclude convergence of gn,M,J,d−1(s). When s is not in
Z[1/p],

gn,M,J,d−1(s) = g̃n,M,J,d−1(s+
1

q
).

Now for d ≥ 2, the uniform convergence of the sequence of functions g̃n,M,J,d−1 and
continuity of g̃M,J imply that the sequence g̃n,M,J,d−1(s+

1
q
) converges to g̃M,J(s). □

Theorem 6.6. Let (R,m) be standard graded, J be a homogeneous m-primary ideal, M
an R-module of dimension d ≥ 2. Then

(1) hM,m,J is differentiable on R. The density function fM,m,J(s) exists everywhere on
R and is the same as h′M,m,J(s).

(2) Moreover fM,m,J is the same as Trivedi’s Hilbert-Kunz density function g̃M,J(s);
see Section 2.

Proof. (1) It follows from [Tay18, Lemma 3.3], that for s ≤ 1, hM(s) = e(m,M)sd/d!.
So hM is differentiable at zero and the derivative is zero. A direct computation shows
that the density function at zero exists and is zero. So we can restrict to (0,∞). Thanks
to Theorem 5.8, (2), it is enough to show that hM is differentiable on (0,∞). By using
Lemma 6.3, we can assume that M is generated in degree zero. Thus by Lemma 6.1

fn,M,m,J(s) = gn,M,J(s) := l([
M

J [pn]M
]⌈sq⌉) for all s ∈ R.
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As d ≥ 2, by Proposition 6.5, gn,M,J(s)/q
d−1 converges to Trivedi’s density function

g̃M,J(s) for all s. Since g̃M,J(s) is continuous, fM,,J(s) is also continuous. Now by Theo-
rem 6.4, (2), hM,I,J is differentiable on (0,∞).

(2) Fix an M ′ which is generated in degree zero and equivalent to M in the sense of
Lemma 6.2. Thanks to Lemma 6.3 and part (1)

hM = hM ′ , fM = fM ′ .

The associativity formula for Trivedi’s density function implies (see [Tri18, Prop 2.14]),
g̃M,J = g̃M ′,J . Since M ′ is generated in degree zero and has dimension at least two, by
Lemma 6.1 and Proposition 6.5, g̃M ′,J = fM ′,m,J . Putting together we conclude that
fM,m,J = g̃M,J . □

We further strengthen the above theorem by proving it for any homogeneous J which not
necessarily has finite colength,

Theorem 6.7. Let (R,m) be a standard graded, J be a homogeneous ideal, s ∈ R, M
be a finitely generated graded module of dimension d. Assume d ≥ 2. Set g̃n,M,J,d−1(s) =
l(M/J [q]M)⌊sq⌋/q

d−1. Then:

(1) The sequence (g̃n,M,J,d−1(s))n converges uniformly on every compact subset of R.
The limiting function is continuous.

(2) hM,m,J is differentiable and

h′M,m,J(s) = fM,m,J(s) = lim
n→∞

g̃n,M,J,d−1(s).

Proof. (1) For a positive integer N , set J ′ = J + mN+1. Then on [0, N ], g̃n,M,J,d−1 =
g̃n,M,J ′,d−1. Since J

′ is m-primary, by [Tri18], g̃n,M,J ′,d−1 converges uniformly to a contin-
uous function. Thus on [0, N ], g̃n,M,J,d−1 converges uniformly to a continuous function.

(2) Fix a compact interval [a, b] ⊆ R. By Theorem 3.13, (1), we can choose t0 such
that for all t ≥ t0, hM,m,J = hM,m,J+mt on [a, b]. Using the ideas from the argument in
part(1), fix an integer t ≥ t0, ensure g̃n,M,J,d−1 = g̃n,M,J+mt,d−1 on [a, b] for all n. By
Theorem 6.6, hM,m,J+mt is differentiable on R with derivative g̃M,J+mt . Thus on (a, b),
hM,m,J is differentiable with derivative being the continuous function g̃M,J . Since by
Theorem 5.8 h′M = fM on (a, b), we are done. □

We point out below that in the graded context the Frobenius-Poincaré function defined
using the underlying grading and the maximal ideal adic filtration coincide.. Recall that
by Ω, we denote the open lower half complex plane. Let (R,m) be standard graded, M
is an N-graded R-module, J be a homogeneous ideal. For y ∈ Ω,

Proposition 6.8. Let (R,m) be standard graded, M an N-graded R-module of dimension
d, J be a homogeneous ideal. Consider the sequence of functions on the open lower half
plane

Gn,M,J(y) =
∞∑
j=0

l([
M

J [q]M
]j)e

−iyj/q

(1) 1
qd
Gn,M,J(y) defines a holomorphic function on Ω for every n.

(2) Recall that FM,m,J denotes the Frobenius-Poincaré function defined in Defini-
tion 4.5. The sequence

lim
n→∞

1

qd
Gn,M,J(y)

converges to FM,m,J(y).
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(3) When J is m-primary, Gn,M,J(y)/q
d converges to FM,m,J(y) on C.

Proof. Fix an N-graded module M ′ generated in degree zero and equivalent to M in the
sense of Lemma 6.2.

(3) Since J is m-primary, Gn is a sum of finitely many entire functions. So Gn is entire.
Fix a compact subset K of C. By [Muk23, Lemma 3.2.5], we can find a constant D such
that

| 1
qd
Gn,M,J(y)−

1

qd
Gn,M ′,J(y)| ≤

D

q
for alln and y ∈ K.

Since M ′ is generated in degree zero, Fn,M ′,m,J = Gn,M ′,J . Since Fn,M ′,m,J/q
d uniformly

converges to FM ′,m,J onK, the last inequality implies that 1
qd
Gn,M,J converges uniformly to

FM ′,m,J on K; see Theorem 4.3. Thanks to Lemma 6.3 and Theorem 4.3, FM ′,m,J = FM,m,J

on C.

(1) There is a polynomial P of degree d with non-negative coefficients such that

l([
M

J [q]M
]j) ≤ l(Mj) ≤ P (j).

Fix a compact subset K ⊆ Ω. Choose ϵ > 0 such that ℑy < −ϵ for every y ∈ K. Since

∞∑
j=0

1

qd
|P (j)|e−jϵ/q

is convergent, we conclude that the sequence of holomorphic functions

(
1

qd

N∑
j=0

l([
M

J [q]M
]j)e

−iyj/q)N

converges uniformly to 1
qd
Gn,M,J(y) on K. This proves the holomorphicity of 1

qd
Gn,M,J on

Ω.
(2) When d = 0, the conclusion follows from a direct computation. Assume d ≥ 1. Since

l([
M

J [q]M
]j) = l([

M

J [q]M
]≤j)− l([

M

J [q]M
]≤j−1),

a direct computation using the equation above shows that,
∞∑
j=0

l([
M

J [q]M
]j)e

−iyj/pn =
∞∑
j=0

l([
M

J [q]M
]≤j)e

−iyj/pn(1− e−iy/p
n

) .(6.1)

Since

l(
(mj + J [q])M

(mj+1 + J [q])M
) = l([

M

(mj+1 + J [q])M
])− l([

M

(mj + J [q])M
]),

a direct computation shows that,

(6.2)
∞∑
j=0

l(
(mj + J [q])M

(mj+1 + J [q])M
)e−iyj/p

n

=
∞∑
j=0

l(
M

(mj+1 + J [q])M
)e−iyj/p

n

(1− e−iy/p
n

)

Choose a such that as an R-module M is generated by homogeneous elements of degree
at most a. Therefore

mjM ⊆M≥j ⊆ mj−aM.

So,
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l(
M

(mj+1 + J [q])M
)− l([

M

J [q]M
]≤j) = l(

M≥j+1 + J [q]M

mj+1M + J [q]M
)

≤ l(
mj+1−aM + J [q]M

mj+1M + J [q]M
)

≤ l(
mj+1−aM

mj+1M
)

≤ Cjd−1,

for some C, which is independent of q and j. Using Equation (6.1), Equation (6.2) and
the comparison above, we get that for any y ∈ Ω,

| 1
qd
Gn,M,J(y)−

1

qd
Fn,m,J(y)| ≤

∞∑
j=0

C
1

q
(
j

q
)d−1e−ℑyj/q|1− e−iy/q|

= C|1− e−iy/q|
∞∫
0

⌊s⌋d−1e−ℑy⌊s⌋ds

≤ C|1− e−iy/q|
∞∫
0

sd−1e−ℑy(s−1)ds.

Since ℑy < 0 for y ∈ Ω, the last integral is convergent. It follows from the last chain of
inequalities that on a compact subset of Ω,

| 1
qd
Gn,M,J(y)−

1

qd
Fn,m,J(y)|

uniformly converges to zero. This finishes the proof of (2). □

7. Arithmetic properties

In this section, we record some arithmetic properties of the function we have con-
structed in the previous sections.

7.1. m-adic continuity. We have proven that the h-function is continuous with respect
to the m-adic topology on the set of ideals in R.

Theorem 7.1. Let t ∈ N, It, Jt be two sequences of ideals such that It + Jt ⊂ mt. Then
for any s, limt→∞ hM,I+It,J+Jt(s) = hM,I,J(s). This convergence is uniform with respect
to s on any compact set in (0,∞).

Proof. If s ̸= 0 then both sides are 0, so there is nothing to prove. Fix 0 < s1 < s2 < ∞
and it suffices to prove the uniform convergence on [s1, s2], this is true by Theorem 3.13
and Theorem 3.20. □

The Frobenius-Poincaré function also satisfies a similar property:

Proposition 7.2. Let t ∈ N, It, Jt be two sequences of ideals such that It+Jt ⊂ mt. Then
for any y ∈ Ω: the open lower half complex plane, limt→∞ FM,I+It,J+Jt(y) = FM,I,J(y).
If J is m-primary, then the above holds for y ∈ C. In either case, the convergence is
uniform on a compact subset of Ω or C.
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Proof. Fix a compact subset K of Ω. Choose ϵ > 0 such that ℑy < −ϵ for all y ∈ K. Re-
call from Theorem 3.16, that there is a polynomial P ∈ R[t] such that hn,M,I,J(s) ≤ P (s)
for all s ∈ R and all n; so hM,I+It,J+Jt(s) ≤ P (s) for all s. Notice |P (s)e−ϵs| is integrable
on R≥0 and the sequence hM,I+It,J+Jt converges to hM,I,J ; the convergence is uniform on
every compact subset of (0,∞); see Theorem 3.13. Say the absolute values of elements
of K is bounded above by D. Given δ > 0, the observations above allows us to choose
an interval [a, b] ⊆ (0,∞) and t0 ∈ N such that,

(a) 2
∫ a
0
|P (s)|e−ϵsds+ 2

∫∞
b

|P (s)|e−ϵsds ≤ δ
2D
.

(b) |hM,I+It,J+Jt(x)− hM,I,J(x)| ≤ δ

2D
∫ b
a e

−ϵsds
for all t ≥ t0 and all s ∈ [a, b].

Therefore by using Theorem 4.3, for y ∈ K and all t ≥ t0

|FM,I+It,J+Jt(y)− FM,I,J(y)| ≤
∫ ∞

0

|y||hM,I+It,J+Jt(s)− hM,I,J(s)|e−ϵsds

≤ D[2

∫ a

0

|P (s)|e−ϵsds+ 2

∫ ∞

b

|P (s)|e−ϵsds

+

∫ b

a

|hM,I+It,J+Jt(s)− hM,I,J(s)|e−ϵsds]

≤ δ .

This proves uniform convergence of (FM,I+It,J+Jt(y))t to FM,I,J(y) on every compact sub-
set of Ω. The assertion for m-primary J follows from a similar argument. □

7.2. Basic properties. Let R be a local ring, t be an indeterminate, I, J be m-primary
ideals, M be a finitely generated R-module.

Theorem 7.3. [Tay18, Proposition 2.6] Assume I, J are two m-primary ideals. Then

(1) dimM < d, then hM,I,J,d(s) = 0.
(2) hM,I,J is increasing.
(3) hM,I,J(s) ≤ e(I,M)sd/d!.
(4) hM,I,J(s) ≤ eHK(J,M).

Theorem 7.4. The above (1) and (2) is still true if only I+J is m-primary. (3) remains
valid when I is m-primary and (4) remains valid when J is m-primary.

Proof. By m-adic continuity limt→∞ hM,I+mt,J+mt(s) = hM,I,J(s) and I + mt, J + mt are
m-primary. We have:

(1) dimM < d, then hM,I+mt,J+mt,d(s) = 0. Let t→ ∞, hM,I,J,d(s) = 0.
(2) For s1 < s2, hM,I+mt,J+mt(s1) ≤ hM,I+mt,J+mt(s2). Let t → ∞, hM,I,J(s1) ≤

hM,I,J(s2).
(3) hM,I,J+mt(s) ≤ e(I,M)sd/d!. Let t→ ∞, we have hM,I,J(s) ≤ e(I,M)sd/d!.
(4) hM,I+mt,J(s) ≤ eHK(J,M). Let t→ ∞, we have hM,I,J(s) ≤ eHK(J,M).

□

Proposition 7.5. [Additivity]Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
modules of dimension at most d. Let I, J be ideals such that I + J is m-primary. Recall
that the Kronecker delta notation δa,b represents zero if a ̸= b and 1 if a = b.

(1) FM,I,J = δdim(M),dim(M ′)FM ′,I,J + δdim(M),dim(M ′′)FM ′′,I,J for F = h, F ;
(2) fM(s) = δdim(M),dim(M ′)fM ′(s)+δdim(M),dim(M ′′)fM ′′(s), whenever hM,I,J , δdim(M),dim(M ′)hM ′,I,J ,

δdim(M),dim(M ′′), hM ′′,I,J are all differentiable at s.
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Proof. (1)When F = h, this is true by Proposition 3.32. Then Theorem 4.3 implies the
statement for F = FM .
(2) follows from Theorem 5.8. □

Corollary 7.6 (Associativity formula). The h-function, density function and Frobenius-
Poincaré function satisfy the associativity formula. To be precise,

(1) let F ∈ {h, F}, then

FM,d(s) =
∑

P∈Spec(R),dimR/P=dimR

λRP
(MP )FR/P (s),

for all s ∈ R.
(2) At a point s where hR/P is differentiable for all P ∈ Assh(R), the same associa-

tivity formula holds for the density function (i.e. F = f) at s.

Theorem 7.7. Let (R,m, k) be a noetherian local ring of dimension d, M be a finitely
generated module of dimension d, I, I ′, J, J ′ be R-ideals such that I ′ ⊂ I, J ′ ⊂ J , I ′ + J ′

is m-primary. Then hM,I′,J ′(s) ≥ hM,I,J(s) and equality holds if I ⊂ Ī ′ and J ⊂ J ′∗.

Proof. The first part of (3) is clear. Both sides are additive on M , so by the associativity
formula, we can replace M with R/P where dimR/P = d. The containment hypotheses
on the ideals also hold for their images in R/P for any prime ideal P . So we may assume
M = R and R is a domain. By definition of the integral closure and tight closure we can
choose a nonzero c ∈ R such that cIn ⊂ I ′n and cJ [q] ⊂ J ′[q], thus I⌈sq⌉ + J [q]/I ′⌈sq⌉ + J ′[q]

is annihilated by c. So

l(
I⌈sq⌉ + J [q]

I ′⌈sq⌉ + J ′[q] )

≤ l(0 : R

I′⌈sq⌉+J′[q]
c)

= l(
R

cR + I ′⌈sq⌉ + J ′[q] ) ≤ Cqd−1

The last equation is true because dimR/cR < dimR. This means

0 ≤ hn,M,I′,J ′(s)− hn,M,I,J(s) ≤ Cqd−1.

Dividing by qd and take the limit when q → ∞, we get hM,I′,J ′(s) = hM,I,J(s). □

Theorem 7.8. Let n0 ∈ N, then
hM,In0 ,J(s) = hM,I,J(sn0), hM,I,J [pn0 ](s) = pn0dhM,I,J(s/p

n0).

Proof. If s ≤ 0 then both sides of the equation are 0 and the equality holds. Now
we assume s > 0. By definition hn,M,In0 ,J(s) = l(M/In0⌈sq⌉ + J [q]M). Since ⌈sqn0⌉ ≤
n0⌈sq⌉ ≤ ⌈sqn0⌉ + n0 − 1, hn,M,I,J(sn0) ≤ hn,M,In0 ,J

(s) ≤ hn,M,I,J(sn0 + (n0 − 1)/q). We

have limn→∞(hn,M,I,J(sn0 + (n0 − 1)/q)− hn,M,I,J(sn0))/q
d = 0 by Theorem 3.20. So

lim
n→∞

hn,M,In0 ,J
(s)/qd = lim

n→∞
hn,M,I,J(sn0)/q

d,

which means hM,In0 ,J
(s) = hM,I,J(sn0). We have hn,M,I,J [pn0 ](s) = l(M/I⌈sq⌉ + J [qpn0 ]M) =

l(M/I⌈s/p
n0 ·qpn0⌉ + J [qpn0 ]M). So

lim
n→∞

hn,M,I,J [pn0 ](s)

qd

= pn0d lim
n→∞

hn+n0,M,I,J(s/p
n0)

qdpn0d

= pn0dhM,I,J(s/p
n0).
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□

7.3. Integration and h-function. Let R be a local ring of characteristic p, R[[t]] be a
power series ring with indeterminate t. Let M be a finitely generated R-module, I, J be
two R-ideals such that I+J is m-primary. Let M [[t]] =M ⊗RR[[t]]. We want to express
hM [[t]],R[[t]],(I,tα),(J,tβ) in terms of hM,R,I,J .

Theorem 7.9. (1)hM [[t]],R[[t]],(I,tα),(J,tβ)(s) = α
∫ s
s−β/α hM,R,I,J(x)dx

(2)hM [[t]],R[[t]],(I,tα),J(s) = α
∫ s
0
hM,R,I,J(x)dx

(3)hM [[t]],R[[t]],I,(J,tβ)(s) = βhM,R,I,J(s).

Proof. We will use the convention Is = R when s ≤ 0. To prove the equality we may
assume s = s0/q0 ∈ Z[1/p] because the functions on both sides are continuous when
s > 0. Then for q ≥ q0, sq is an integer.

hn,M [[t]],R[[t]],(I,tα),(J,tβ) = l(
M [[t]]

((I, tα)sq + (J [q], tβq))M [[t]]
)

The above length is also equal to

l(
M [[t]]

(
∑

0≤j≤sq I
sq−jtαj + (J [q], tβq))M [[t]]

)

But by the convention, it is also

l(M [[t]]/
∑

0≤j≤∞

Isq−jtαj + (J [q], tβq)M [[t]])

and because the existence of the tβq-term, it is also equal to

l(M [[t]]/(
∑

0≤j≤⌊βq/α⌋

Isq−jtαj + (J [q], tβq))M [[t]])

Note that the module inside is nonzero only in t-degree at most βq − 1. So summing up
over the lengths in different t-degrees, the above length is also equal to the following sum:∑

0≤x≤βq−1

l(M/(J [q] + Isq−⌊x/α⌋)M)

Let y = ⌊x/α⌋. Up to adding a term of O(qd), it is equal to

α
∑

0≤y≤⌊βq/α⌋

l(M/J [q] + Isq−yM)

which is exactly

α
∑

0≤y≤⌊βq/α⌋

hn,M,I,J(s− y/q)

= αq

∫ s

s−⌊βq/α⌋/q−1/q

hn,M,I,J(x)dx

Now we divide by qd+1 and take the limit, then O(qd)-term disappears, so the left is

= α

∫ s

s−β/α
hM,I,J(x)dx.

Since the equation

hM [[t]],R[[t]],(I,tα),(J,tβ) = α

∫ s

s−β/α
hM,R,I,J(x)dx
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is true on Z[1/p] and both sides are continuous with respect to s, they are equal on all
of R. The rest of the two equations can be obtained by taking limit as α or β goes to
infinity and using the m-adic continuity proven in Theorem 3.13. □

7.4. Ring extension.

Proposition 7.10. Let (R,m) → (S, n) be a local map such that mS is n-primary and
dimR = dimS. Then

hM⊗RS,S,IS,JS(s) ≤ lS(S/mS)hM,R,I,J(s).

The equality holds when S is flat over R.

Proof. For anym-primary ideal a, we have that lS(M⊗RS/(aS)M⊗RS) ≤ lR(M/aM)lS(S/mS).
This means hn,M⊗RS,S,IS,JS(s) ≤ l(S/m)hn,M,R,I,J(s). All these equalities will hold if S is
flat over R. □

8. Head and Tail of the h-function

In this section, we discuss the behaviour of h(s) near zero and s large enough. The re-
gions near zero and away from zero where the h-function often shows interesting behaviour
are marked by two other already known invariants, namely F -limbus and F -threshold. F -
threshold is a well-known numerical invariant in characteristic p which compares the ordi-
nary power and Frobenius power; it was defined as a limsup in [Hun+08a] and [MTW04],
and is shown to be a limit in [DNP18]. The F -limbus is less known, which is defined in
[Tay18].

Definition 8.1. Let R be a ring of characteristic p > 0 which is not necessarily local,
and let I, J be ideals of R. Define

cJI (n) = sup{t ∈ N : I t ⊈ J [pn]}

cJ(I) = lim
n→∞

sup{t ∈ N : I t ⊈ J [pn]}
pn

bJI (n) = inf{t ∈ N : J [pn] ⊈ I t}

bJ(I) = lim
n→∞

inf{t ∈ N : J [pn] ⊈ I t}
pn

The number cJ(I) is called the F -threshold of I with respect to J and the number
bJ(I) is called the F -limbus of I with respect to J . The following properties are well
known, For example, see [Tay18, Lemma 3.2].

Lemma 8.2. Let R be a ring of characteristic p > 0, and let I, J be proper ideals of R.

(1) For any I, J , any limit above either exists or goes to infinity.
(2) If I is contained in the Jacobson radical of R, I ⊈ nil(R), then bJ(I) ≤ cJ(I).

(3) If I ⊈
√
J then cJ(I) = ∞.

(4) If I ⊂
√
J then 0 ≤ cJ(I) <∞.

(5) If J ⊈
√
I then bJ(I) = 0.

(6) If J ⊂
√
I then 0 < bJ(I) ≤ ∞.

(7) If I ⊂ Rad(R), I ⊈ nil(R), I ⊂
√
J , J ⊂

√
I, then 0 < bJ(I) ≤ cJ(I) <∞.

Lemma 8.3. Let (R,m) be a local ring of dimension d and characteristic p, let I, J be
two proper ideals of R, and let M be a finitely generated R-module.

(1) If I is m-primary, then bJ(I) > 0 and for s ≤ bJ(I), hM(s) = sd

d!
e(I,M).

(2) If J is m-primary, then cJ(I) <∞ and for s ≥ cJ(I), hM(s) = eHK(J,M).
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Proof. The above Lemma is a generalization of Lemma 3.3 of [Tay18]. The proof is
identically the same since it only uses the containment relation, which does not depend
on whether I, J are m-primary or not. If I is m-primary then J ⊂

√
I, so bJ(I) > 0; if J

is m-primary then I ⊂
√
J , so cJ(I) <∞. □

8.1. Tail of the h-function: F -threshold, minimal stable point and maximal
support. Let (R,m) be a local ring of characteristic p > 0, I, J are R-ideals. Assume
J is m-primary. By Lemma 8.3, (2), when J is m-primary, the h-function becomes a
constant eHK(J,M) when s ≫ 0. Since h(s) is increasing, hM(s) ≤ eHK(J,M) for any
s. The h-function is also an increasing function, so there is a minimal point after which
hM,I,J(s) becomes constant. Define

αM,I,J = sup{s|hM,I,J(s) ̸= eHK(J,M)} = min{s|hM,I,J(s) = eHK(J,M)}.
We relate αR,I,J to other seemingly unrelated invariants of (I, J).

Definition 8.4. Let (R,m, k) be a local ring of characteristic p > 0, I, J be two R-ideal,

I ⊂
√
J . Let

rJI (n) = max{t ∈ N|I t ⊈ (J [pn])∗},
where (J [pn])∗ denotes the tight closure of J [pn]; see Definition 2.5.

rJ(I)+ = limn→∞
rJI (n)

pn
.

rJ(I)− = limn→∞
rJI (n)

pn
.

Under mild hypothesis, in Theorem 8.6, we show that rJ(I)+ = rJ(I)− = αR,I,J .

Lemma 8.5. Let (R,m, k) be a reduced d-dimensional local ring of characteristic p > 0,
I, J be two R-ideals. Then eHK(J,R) = limn→∞ l(R/(J [q])∗)/qd.

Proof. It suffices to show limn→∞ l((J [q])∗/J [q])/qd = 0. By assumption R is reduced, F -
finite. So there is a test element c ∈ R, which is in particular not contained in any minimal
prime of R; see [HH90, sec 6]. Since c(J [q])∗ ⊆ J [q] for all n, we have l((J [q])∗/J [q]) ≤
l(0R/J [q] : c) = l(R/cR+J [q]) ≤ Cqd−1 for some constant C, so limn→∞ l((J [q])∗/J [q])/qd =
0. □

Theorem 8.6. Let (R,m, k) be a reduced formally equidimensional ring4 of characteristic
p > 0, I be an R-ideal, J be an m-primary R-ideal. Then rJ(I)+ = rJ(I)− = αR,I,J . In
particular, rJ(I) = limn→∞ rJ(I)(n)/pn exists.

Proof. Obviously rJ(I)+ ≥ rJ(I)−, so it suffices to prove rJ(I)+ ≤ αR,I,J ≤ rJ(I)−. Since
Z[1/p] is dense in R, it suffices to prove:

(1) For x ∈ Z[1/p], if x > rJ(I)−, then x ≥ αR,I,J ;
(2) For x ∈ Z[1/p], if x < rJ(I)+, then x ≤ αR,I,J .

(1): If x > rJ(I)−, then there is an infinite sequence ni, such that xpni > rJ(I)(ni) and
xpni is an integer for all i. By definition of rn, I

xpni ⊂ (J [pni ])∗. So

hR,I,J(x) = lim
i→∞

l(R/I⌈sp
ni⌉ + (J [pni ])∗)/qd = lim

i→∞
l(R/(J [pni ])∗)/qd = eHK(J,R).

So x ≥ αR,I,J .

(2): If x < rJ(I)+, then there is a integer n0, such that xpn0 ≤ rJ(I)(n0) and xp
n0 is an

integer. Let q0 = pn0 . By definition of rJ(I)(n), Ixq0 ⊈ (J [q0])∗. Choose f ∈ Ixq0\(J [q0])∗.

4i.e. the minimal primes of R̂ have the same dimension
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Let J̃ = J [q0] + fR; then eHK(J̃ , R) < eHK(J
[q0], R); see [Hun13, Thm 5.5], [HH90, Thm

8.17]. Now fix an s < xq0. Then for any q = pn, sq < xqq0. Since f ∈ Ixq0 . So
f q ∈ Ixqq0 ⊆ I⌈sq⌉. So

I⌈sq⌉ + (J [q0] + fR)[q] = I⌈sq⌉ + (J [q0])[q].

This means hR,I,J̃(s) = hR,I,J [q0](s). So for s < xq0, hR,I,J [q0](s) = hR,I,J̃(s) ≤ eHK(J̃ , R) <

eHK(J
[q0], R). This means αR,I,J [q0] ≥ xq0. By Theorem 7.8, hR,I,J [q0](s) = qd0hR,I,J(s/q0),

αR,I,J =
α
R,I,J[q0]

q0
≥ x. □

Since hM(s) is the integration of fM(s), we see the minimal stable point of hM is the
maximal support of fM . Precisely,

Corollary 8.7. Let (R,m, k) be a local ring of characteristic p > 0, I be an R-ideal, J be
an m-primary R-ideal. Then αR,I,J = sup{s| fR,I,J(s) exists and is nonzero}. Moreover
for s > αR,I,J , fR,I,J(s) is zero.

Proof. For s > αR,I,J , hI,J(s) is constant. So by Theorem 5.8, fI,J exists and is zero.
Since hI,J is the integral of the density function (Theorem 6.4) and h is a non-constant
increasing function on (0, αR,I,J) for any 0 < a < αR,I,J , fI,J has to be non-zero on a set
of non-zero measure. □

Remark 8.8. Recall from Theorem 6.7 that for standard graded (R,m) of Krull dimension
at least two and a finite colength homogeneous ideal J , Trivedi’s density function g̃R,J
coincides with fR,m,J and both are continuous. So Theorem 8.6 gives a precise descrip-
tion of the support of g̃R,J . Thus Theorem 8.6 and the theorem below extends [TW22,
Thm 4.9], where αR,J is shown to coincide with the F -threshold cJ(m) under suitable
hypothesis.

Theorem 8.9. Let (R,m, k) be a local ring of characteristic p > 0, I be an R-ideal, J be
an m-primary R-ideal. Then cJ(I) = rJ(I) is true under either of the assumptions below:

(1) There exists a sequence of positive numbers r′n such that Ir
′
n ⊂ J [q] : (J [q])∗ for

infinitely many q ≫ 0 and limn r
′
n/p

n → 0.
(2) There exists a constant n0 such that In0 ⊂ J [q] : (J [q])∗ for infinitely many q ≫ 0.
(3) R is F -rational5, i.e. the tight closure of every parameter ideal coincides with the

ideal and J is a parameter ideal.
(4) I ⊂

√
τ(R), where τ(R) = ∩a⊂Ra : a∗ is the test ideal of R. See [HH90, Definition

8.22, Proposition 8.23] for details on the test ideal.
(5) (Theorem 4.9, [TW21])R is strongly F -regular on the punctured spectrum.

Proof. (1) By definition rJI (n) ≤ cJI (n), and the condition implies cJI (n) ≤ rJI (n)+ rn,
so limn(c

J
I (n)− rJI (n))/p

n = 0 and cJ(I) = rJ(I).
(2) By (1) and the fact that limn n0/n = 0.
(3) If J is a parameter ideal, so is J [q]. Since R is F -rational, J [q] : (J [q])∗ = R for

any q, so n0 = 1 satisfies the assumption of (2).
(4) There exist an n0 such that In0 ⊂ τ(R) ⊂ ∩qJ [q] : (J [q])∗, and this n0 satisfies the

assumption of (2).

(5) In this case τ(R) is either m-primary or is the unit ideal, so I ⊂
√
τ(R) always

holds.
□

5see [FW89], [Smi97]
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8.2. Head of the h-function: order of hM at 0 and Hilbert-Kunz multiplicity
of quotient rings. So far we have proven continuity of the h-function on R>0; see
Theorem 3.20, Theorem 3.31. In this section we determine when hM,I,J is continuous at
s = 0; see Theorem 8.13. In Theorem 8.11, we determine the order of vanishing of h-
functions near the origin and show that the asymptotic behaviour of hI,J near the origin
captures other numerical invariants of (R, I, J). A major intermediate step involved in
proving Theorem 8.11 is Theorem 8.10, which boils down to proving commutation of the
order of a double limit. We lay the groundwork for that.

Let (R,m, k) be a local ring of characteristic p > 0, I, J be two R-ideals such that
I + J is m-primary. Let d = dimR, d′ = dimR/I. For a positive integer s0, consider the
sequence of real numbers:

Γs0,m,n =
l(R/Is0p

n
+ J [pnpm])

pndpmd′sd−d
′

0

.

(8.1) lim
n→∞

Γs0,m,n =
hR(s0/p

m)

(s0/pm)d−d
′ .

lim
m→∞

Γs0,m,n =
eHK(J

[pn], R/Is0p
n
)

pndsd−d
′

0

=
eHK(J,R/I

s0pn)

(s0pn)d−d
′

=
1

(s0pn)d−d
′

∑
P∈Assh(R/I)

eHK(J,R/P )lRP
(RP/I

s0pnRP ) .

For P ∈ Assh(R/I), we have ht(P ) ≤ dimR− dimR/P = dimR− dimR/I = d− d′. So

lim
n→∞

lim
m→∞

Γs0,m,n = lim
n→∞

1

(s0pn)d−d
′

∑
P∈Assh(R/I)

eHK(J,R/P )lRP
(RP/I

s0pnRP )

=
1

(d− d′)!

∑
P∈Assh(R/I)

eHK(J,R/P )e(I, RP ) .

Since R is F -finite domain and hence an excellent domain (see [Kun76]), for all P ∈
Assh(R/I), ht(P ) = d− d′. So the above quantity is

1

(d− d′)!

∑
P∈Assh(R/I)

eHK(J,R/P )e(IRP , RP ).

When R is a Cohen-Macaulay domain and I is part of a system of parameters, the above
quantity recovers the Hilbert-Kunz multiplicity eHK(J,R/I) as,∑

P∈Assh(R/I)

eHK(J,R/P )e(IRP , RP )

=
∑

P∈Assh(R/I)

eHK(J,R/P )l(RP/IRP )

= eHK(J,R/I) .
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Theorem 8.10. Assume R is a domain and I ̸= 0 and J be such that I+J is m-primary.
Fix a positive integer s0. Set dim(R/I) = d′. Then

lim
m→∞

h(s0/p
m)

(s0/pm)d−d
′ =

1

(d− d′)!

∑
P∈Assh(R/I)

eHK(J,R/P )e(I, RP ) .

Proof. We use the notation set above in this subsection. It follows from Equation (8.1)
and above that we need to show

lim
m→∞

lim
n→∞

Γs0,m,n = lim
n→∞

lim
m→∞

Γs0,m,n.

We already see that limn→∞ Γs0,m,n and limn→∞ limm→∞ Γs0,m,n exists. We claim that
that the sequence n→ Γs0,m,n is uniformly convergent in terms of m; then, by argument
of analysis, we get limm→∞ limn→∞ Γs0,m,n exists, and is equal to limn→∞ limm→∞ Γs0,m,n.
To this end, we prove that there exist a constant C such that |Γs0,m,n+1−Γs0,m,n| ≤ C/pn

for all m, which implies that | limn→∞ Γs0,m,n− Γs0,m,n| ≤ 2C/pn for all m. We can prove
it in two steps: we first prove there is a constant C1 such that Γs0,m,n+1 − Γs0,m,n ≤
C1/p

n, then we prove there is a constant C2 such that Γs0,m,n − Γs0,m,n+1 ≤ C2/p
n, then

C = max{|C1|, |C2|} satisfies the statement of the claim. Without loss of generality we
assume R

m
is a perfect field; see Remark 3.15.

Choice of C1: since dimR = d, there is an exact sequence

0 → R⊕pd → F∗R → N → 0

where N is an R-module with dimN < d. Then we have

(R/Is0p
n

+ J [pnpm])⊕p
d → F∗R/(I

s0pn + J [pnpm])F∗R → N/Is0p
n

+ J [pnpm]N → 0.

This means

l(
R

Is0pn+1 + J [pn+1pm]
) ≤ l(

R

Is0pn[p] + J [pn+1pm]
) ≤ pdl(

R

Is0pn + J [pnpm]
)+l(

N

(Is0pn + J [pnpm])N
).

So dividing p(n+1)dpmd
′
sd−d

′

0 , we get

Γs0,m,n+1 ≤ Γs0,m,n + l(N/Is0p
n

+ J [pnpm]N)/p(n+1)dpmd
′
sd−d

′

0 .

Now we claim that there is a constant C1 > 0 that depends on N, I, J and s0 but is
independent of m,n such that l(N/Is0p

n
+ J [pnpm]N)/pn(d−1)+dpmd

′
sd−d

′

0 ≤ C1. We have

l(N/Is0p
n

+ J [pnpm]N) ≤ l(N/Is0[p
n] + J [pnpm]N)

= l(F n
∗ N/I

s0 + J [pm]F n
∗ N)

≤ µR(F
n
∗ N)l(R/Is0 + J [pm]).

Since dimN ≤ d − 1 and dimR/I = d′, µR(F
n
∗ N)/pn(d−1) and l(R/Is0 + J [pm])/pmd

′
are

both bounded. And p−dsd−d
′

0 is independent of m,n. This means there is a constant
C1 > 0 that depends on N, I, J and s0 but is independent of m,n such that l(N/Is0p

n
+

J [pnpm]N)/pn(d−1)+dpmd
′
sd−d

′

0 ≤ C1. Thus we have

Γs0,m,n+1 ≤ Γs0,m,n + C1/p
n.

Choice of C2: since dimR = d, there is an injection F∗R
ϕ−→ R⊕pd where dimCokerϕ <

dimR. Let µ be the minimal number of generators of I. Choose 0 ̸= c ∈ I and let
ψ = cµϕ. Since R is a domain, ψ is still an injection, and we have a short exact sequence

0 → F∗R
ψ−→ R⊕pd → N ′ → 0
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and we have dimN ′ < dimR.

F∗R/(I
s0pn + J [pnpm])F∗R

ϕ̄−→ (R/Is0p
n

+ J [pnpm])⊕p
d → N ′/Is0p

n

+ J [pnpm]N ′ → 0

We claim that ϕ̄ induces an R-linear map Φ : F∗(R/(I
s0pn+1

+ J [pn+1pm]))
ϕ̄−→ (R/Is0p

n
+

J [pnpm])⊕p
d
. It suffices to show ψ(F∗(I

s0pn+1
+ J [pn+1pm])) ∈ (Is0p

n
+ J [pnpm])⊕p

d
. We have

Is0p
n+1

= Is0p
np ⊂ I(s0p

n−µ)[p]. So

ψ(F∗(I
s0pn+1

+ J [pn+1pm]))

⊂ ψ(F∗(I
(s0pn−µ)[p] + J [pn+1pm]))

⊂ I(s0p
n−µ) + J [pnpm]ψ(F∗R)

⊂ cµ(I(s0p
n−µ) + J [pnpm])ϕ(F∗R)

⊂ I(s0p
n) + J [pnpm]ϕ(F∗R)

⊂ (I(s0p
n) + J [pnpm])⊕p

d

.

This induces an exact sequence

F∗(R/(I
s0pn+1

+ J [pn+1pm])) → (R/Is0p
n

+ J [pnpm])⊕p
d → N ′/Is0p

n

+ J [pnpm]N ′ → 0

Therefore,

pdl(R/Is0p
n

+ J [pnpm]) ≤ l(R/Is0p
n+1

+ J [pn+1pm] + l(N ′/Is0p
n

+ J [pnpm]N ′)

So dividing p(n+1)dpmd
′
sd−d

′

0 , we get

Γs0,m,n+1 ≤ Γs0,m,n + l(N ′/Is0p
n

+ J [pnpm]N ′)/p(n+1)dpmd
′
sd−d

′

0

Since dimN ′ < dimR, we can use the same proof in the previous step to show that there
is a constant C2 > 0 that depends on N ′, I, J and s0 but independent of m,n such that
l(N ′/Is0p

n
+ J [pnpm]N ′)/pn(d−1)+dpmd

′
sd−d

′

0 ≤ C2, so

Γs0,m,n ≤ Γs0,m,n+1 + C2/p
n.

□

Theorem 8.11. Let (R,m, k) be a local domain, I, J be two R-ideals, I ̸= 0, I + J is
m-primary. Let d = dimR, d′ = dimR/I. Then:

(1) lims→0+ h(s)/s
d−d′ = 1

(d−d′)!
∑

P∈Assh(R/I) eHK(J,R/P )e(I, RP ).

(2) The order of vanishing h(s) at s = 0 is exactly d− d′.
(3) h(s) is continuous at 0.

Proof. (1) Let 1
(d−d′)!

∑
P∈Assh(R/I),ht(P )=d−d′ eHK(J,R/P )e(I, RP ) = c = cI,J , which is a

constant that only depends on I, J . The last theorem implies for any fixed s0,

lim
m→∞

h(s0/p
m)/(s0/p

m)d−d
′
= c

Choose a sequence {si}i ⊂ (0,∞) such that limi→∞ si = 0 and limi→∞ h(si)/s
d−d′
i

exists. Below we argue that limi→∞ h(si)/s
d−d′
i = c; then (1) follows. Fix any n0 ∈ N.

There exists an integer αi for each si such that sip
αi ∈ (pn0−1, pn0 ]. Since h(s) is an
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increasing function,

h(⌊siqαi⌋/qαi)

((⌊siqαi⌋+ 1)/qαi)d−d′
≤ h(si)

sd−d
′

i

≤ h(⌈siqαi⌉/qαi)

((⌈siqαi⌉ − 1)/qαi)d−d′

=⇒ (
⌊siqαi⌋

⌊siqαi⌋+ 1
)d−d

′ h(⌊siqαi⌋/qαi)

(⌊siqαi⌋/qαi)d−d′
≤ h(si)

sd−d
′

i

≤ (
⌈siqαi⌉

⌈siqαi⌉ − 1
)d−d

′ h(⌈siqαi⌉/qαi)

(⌈siqαi⌉/qαi)d−d′

=⇒ (
pn0−1

pn0−1 + 1
)d−d

′ h(⌊siqαi⌋/qαi)

(⌊siqαi⌋/qαi)d−d′
≤ h(si)

sd−d
′

i

≤ (
pn0−1

pn0−1 − 1
)d−d

′ h(⌈siqαi⌉/qαi)

(⌈siqαi⌉/qαi)d−d′
.

Let i → ∞, then si → 0, αi → ∞. Since ⌊siqαi⌋, ⌈siqαi⌉ lies in [pn0−1, pn0 ], so there are
only finitely many possible values of ⌊siqαi⌋, ⌈siqαi⌉. So by Theorem 8.10,

lim
i→∞

h(⌊siqαi⌋/qαi)

(⌊siqαi⌋/qαi)d−d′
= lim

i→∞

h(⌈siqαi⌉/qαi)

(⌈siqαi⌉/qαi)d−d′
= c.

This means

(
pn0−1

pn0−1 + 1
)d−d

′
c ≤ lim

i→∞
h(si)/s

d−d′
i ≤ (

pn0−1

pn0−1 − 1
)d−d

′
c.

Since this is true for arbitrary n0, we get

lim
i→∞

h(si)/s
d−d′
i = c.

This finishes the proof of (1).
(2) follows from (1).
(3) Since R is a domain and I ̸= 0, d′ = dimR/I < dimR = d, d − d′ ≥ 1. So the

order of h(s) at 0 is at least 1; in particular, lims→0+ h(s) = 0 = h(0). □

Lemma 8.12. Let (R,m) be a noetherian local domain, I, J be two R-ideal such that
I + J is m-primary. Then hR,I,J(s) is continuous at 0 if and only if I ̸= 0.

Proof. If I ̸= 0 then by previous theorem it is continuous at 0. If I = 0, then hR(s) =
eHK(J,R) ̸= 0 = hR(0) for s > 0, so it is discontinuous at 0. □

Theorem 8.13. Let (R,m) be a noetherian local ring, I, J be two R-ideals such that
I + J is m-primary, M be a finitely generated R-module. Then hM,I,J(s) is continuous
at 0 if and only if I ⊈ P for any P ∈ Supp(M) with dimR/P = dimM . In particular,
hR,I,J(s) is continuous at 0 if and only if dimR > dimR/I. If hM is discontinuous at 0
then we have

lim
s→0+

hM(s) =
∑

P∈Supp(M),I⊂P,dimR/P=dimM

lRP
(MP )eHK(J,R/P ).

Proof. By the associativity formula for h-function in Corollary 7.6,

hM(s) =
∑

P∈Supp(M),dimR/P=dimM

lRP
(MP )hR/P (s).

For any P ∈ Supp(M), lim
s→0+

hR/P,I,J(s) is always non-negative; the limit is positive if and

only if I ⊆ P , in which case the limit is eHK(J,R/P ); see Lemma 8.12. Thus taking
limit as s approaches zero from the right, we get the expression of the right hand limit of
hM . Since hM is continuous at 0 if and only if lims→0+ hR/P (s) = 0 for any P ∈ Supp(M)
with dimR/P = dimM , the continuity of hM at zero is equivalent to asking I ⊈ P for
any P ∈ Supp(M) with dimR/P = dimM . If M = R, then this means I ⊈ P for any
P ∈ Assh(R) which means dimR > dimR/I. □
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9. Questions

Inspired by Trivedi’s question [Tri21, Question 2], we ask

Question 9.1. Let I, J be m-primary ideals of a noetherian local ring R. Is hR,I,J a
piecewise polynomial? In other words, does there exists a countable subset S of R and
a covering R \ S =

∐
n∈N

(an, bn) such that on each (an, bn), hR,I,J is given by a polynomial

function?

We point out that, in the context of the question, hR,I,J(s) is eHK(J,R) for large s,
e(I, R)sdim(R)/ dim(R)! on some interval (0, a] and zero for s nonpositive.
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